The dynamics and impact of R-loops in epigenetic stability and aging
R 环在表观遗传稳定性和衰老中的动态和影响
基本信息
- 批准号:10315986
- 负责人:
- 金额:$ 3.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeAgingAnimalsBindingBioinformaticsBiology of AgingCamptothecinCell AgingCellsChIP-seqChromatinChronologyClustered Regularly Interspaced Short Palindromic RepeatsDNADataDevelopmentDiseaseDrug TargetingElementsEmbryoEnhancersEnsureEnzymesEpigenetic ProcessFibroblastsFutureGene ExpressionGenesGenetic TranscriptionGenomeGenomic InstabilityGenomicsHybridsImpairmentIn VitroKnowledgeLongevityManuscriptsMusMuscleNerve DegenerationNoisePathologicPhenotypePhysiologicalPreparationProteinsPublishingRNARNA DegradationRNA analysisResearchRoleStructureSystemTestingTrainingUntranslated RNAage relatedagedanti agingcareercofactorendonucleaseepigenetic markerepigenetic therapyepigenomeepigenomicshelicasein vivoinnovationmouse modelnew therapeutic targetnoveloverexpressionpreservationpreventpromoterrestorationsight restorationtherapeutic targettissue regenerationtranscriptome sequencing
项目摘要
PROJECT SUMMARY
Introduction: A growing body of evidence supports the notion that epigenetic dysregulation is a key driver of
aging. Indeed, recent studies show that epigenetic markers accurately predict chronological age, and that in vivo
epigenetic reprogramming can prolong lifespan and enable tissue regeneration in aged animals. Most striking
was the recent evidence from the David Sinclair group which demonstrated that induction of epigenetic “noise”
through use of non-mutagenic double-strand breaks (ICE mouse model) leads to accelerated aging phenotypes
at the physiological and cellular level (ICE MEFs), such as loss of cell identity. Interestingly, the epigenetic aging
induced in ICE mice results from the dysregulation of key enhancers, epigenomic structures which drive gene
expression via 3D interactions with target gene promoters. Recent evidence indicates that enhancers are
transcribed into a non-coding RNA species, enhancer RNA (eRNA), and that eRNA supports enhancer stability.
Moreover, mounting evidence reveals that eRNA forms a structure with enhancer DNA called an “R-loop” (an
RNA:DNA hybrid with a displaced ssDNA strand). In a recent study, our lab demonstrated that STAG2, a protein
which helps maintain enhancer stability and cell identity, also binds R-loops in vitro and co-localizes with them
at enhancers, suggesting that STAG2 binds eRNA R-loops. We also find (unpublished) that STAG2 protects R-
loops from degradation by the RNA:DNA helicase RNaseH1. Furthermore, I found that DHX9, a protein which
regulates R-loop formation, is the top over-expressed gene in ICE mouse muscle and I found evidence of eRNA
R-loops at enhancers dysregulated in ICE MEFs. Taken together, these findings suggest that STAG2 protects
eRNA R-loops to maintain youthful enhancer stability with age. Therefore, I hypothesize that dysregulation of
physiological R-loops drives epigenetic aging by impairing youthful enhancer stability.
Aim 1: Elucidate the mechanism of eRNA R-loops in enhancer stability with epigenetic aging. I will uncover
eRNA R-loops that are associated with enhancer dysregulation in epigenetic aging. I will use a CRISPR system
to manipulate these R-loops and assess the impact on enhancer stability and cellular aging phenotypes.
Aim 2: Determine the impact of the STAG2/R-loop interaction in preserving the youthful epigenome. I will assess
cellular aging and epigenetic noise in ICE cells with manipulation of STAG2 and RNaseH1, and I will assess the
differential binding of STAG2 with epigenetic aging in ICE MEFs.
Conclusion and significance: With these aims, I will elucidate the role of physiological eRNA R-loops (and
STAG2/R-loop interactions) in the mechanism of enhancer stability with aging. These aims are significant as
they are the first to address the physiological role of R-loops in either enhancer stability or in aging, and they
also have the potential to reveal novel drug targets for restoration of the youthful epigenome. Furthermore, the
completion of the proposed training plan will prepare me for an independent research career in aging biology.
项目概要
简介:越来越多的证据支持表观遗传失调是一个关键驱动因素的观点。
事实上,最近的研究表明表观遗传标记可以准确预测实际年龄,并且可以预测体内年龄。
表观遗传重编程可以延长衰老动物的寿命并实现组织再生。
大卫·辛克莱小组最近的证据表明,表观遗传“噪音”的诱导
通过使用非诱变双链断裂(ICE 小鼠模型)导致加速衰老表型
在生理和细胞水平(ICE MEF),例如暗示的细胞身份丧失、表观遗传衰老。
在 ICE 小鼠中诱导的结果是关键增强子、驱动基因的表观基因组结构的失调
最近的证据表明增强子是通过与靶基因启动子的 3D 相互作用来表达的。
转录成非编码 RNA 种类,增强子 RNA (eRNA),并且 eRNA 支持增强子稳定性。
此外,越来越多的证据表明,eRNA 与增强子 DNA 形成一种称为“R 环”的结构(一种
在最近的一项研究中,我们的实验室证明了 STAG2(一种蛋白质)。
有助于维持增强剂稳定性和细胞身份,还在体外结合 R 环并与其共定位
增强子,表明 STAG2 结合 eRNA R 环 我们还发现(未发表)STAG2 保护 R-环。
此外,我发现 DHX9 是一种蛋白质,它可以防止 RNA:DNA 解旋酶 RNaseH1 的降解。
调节 R 环的形成,是 ICE 小鼠肌肉中最过度表达的基因,我发现了 eRNA 的证据
综上所述,ICE MEF 中增强子的 R 环失调,这些发现表明 STAG2 具有保护作用。
eRNA R 环随着年龄的增长保持年轻增强子的稳定性因此,我与这种失调作斗争。
生理 R 环通过损害年轻增强子稳定性来驱动表观遗传衰老。
目标 1:阐明 eRNA R 环在表观遗传衰老过程中增强子稳定性的机制。
与表观遗传衰老中增强子失调相关的 eRNA R 环我将使用 CRISPR 系统。
操纵这些 R 环并评估对增强子稳定性和细胞衰老表型的影响。
目标 2:确定 STAG2/R 环相互作用对保存年轻表观基因组的影响。
通过操纵 STAG2 和 RNaseH1 来观察 ICE 细胞中的细胞衰老和表观遗传噪声,我将评估
STAG2 与 ICE MEF 中表观遗传衰老的差异结合。
结论和意义:带着这些目标,我将阐明生理性 eRNA R 环(以及
STAG2/R 环相互作用)在增强子稳定性随衰老的机制中具有重要意义。
他们是第一个解决 R 环在增强子稳定性或衰老中的生理作用的人,并且他们
也有可能揭示恢复年轻表观基因组的新药物靶点。此外,
完成拟议的培训计划将为我在衰老生物学领域的独立研究生涯做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Miller其他文献
Henry Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Miller', 18)}}的其他基金
The dynamics and impact of R-loops in epigenetic stability and aging
R 环在表观遗传稳定性和衰老中的动态和影响
- 批准号:
10474329 - 财政年份:2021
- 资助金额:
$ 3.25万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别:
Console Upgrade for 4.7T PET-MRI Preclinical Scanner
4.7T PET-MRI 临床前扫描仪控制台升级
- 批准号:
10630520 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 3.25万 - 项目类别: