Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
基本信息
- 批准号:10306351
- 负责人:
- 金额:$ 90.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:ArteriesAstrocytesBlood VesselsBlood capillariesBlood flowBrainBrain DiseasesCalciumCapillary Endothelial CellCerebrovascular CirculationCerebrovascular systemCommunicationComplexComputer ModelsCoupledDataDinoprostoneDiseaseEndotheliumEquilibriumG alpha q ProteinGoalsHealthInternetKineticsMediatingMediator of activation proteinMembraneMetabolicMicrovascular DysfunctionMolecularNeuronsNitric OxideNutrientOxygenPerfusionPericytesPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhysiologicalPotassiumReceptor SignalingRegulationResearchRoleSensorySignal TransductionSiteSystemTestingTimeVascular blood supplyarteriolebasebiophysical modelcerebral capillarycerebral microvasculaturecerebrovascularfeedingin silicoin vivoinsightinward rectifier potassium channelmolecular modelingneurovascular couplingnoveloperationparenchymal arteriolesresponse
项目摘要
PROJECT SUMMARY
Neurons in the brain have limited energy reserves and thus rely on a “just-in-time” delivery strategy in which
active neurons signal to the brain microvasculature to increase regional cerebral blood flow (CBF), resupplying
nutrients and oxygen as well as removing toxic metabolites. Despite extensive study, the mechanisms
underlying the functional linkage between neuronal metabolic demand and vascular supply, termed
neurovascular coupling (NVC), remain poorly understood. Blood flow to the brain is mediated by parenchymal
arterioles and hundreds of miles of capillaries, which enormously extend the territory of perfusion. We recently
presented evidence supporting the concept that brain capillaries act as a neuronal activity-sensing network,
demonstrating that brain capillary endothelial cells (cECs) are capable of initiating an electrical
(hyperpolarizing) signal in response to neuronal activity that propagates upstream to cause dilation of feeding
arterioles and increase blood flow locally at the site of signal initiation. We have established the mechanistic
basis for this electrical signal, showing that neuron- and/or astrocyte-derived potassium (K+) is the critical
mediator and identifying the strong inward rectifier K+ channel, Kir2.1, as the key molecular player. We have
recently discovered that a second fundamental NVC mechanism based on calcium (Ca2+) signaling, with
distinct kinetics and regulatory features, also operates in brain capillaries, and can be initiated by the putative
NVC mediator prostaglandin E2 (PGE2). We have further found that a mechanism initiated by Gq-protein
coupled receptor signaling and mediated by dynamic changes in membrane phosphatidylinositol 4,5-
bisphosphate (PIP2) levels controls the balance between electrical and Ca signaling. Additional preliminary
2+
data support a role for gasotransmission via Ca2+-dependent endothelial nitric oxide signaling and pericyte-
mediated regulation of capillary blood flow in modulating NVC. The immediate goals of this proposal are to
create an integrated view of electrical, Ca2+ and related regulatory signaling mechanisms at molecular,
biophysical, and computational-modeling levels by examining their operation in increasingly complex segments
of the brain vasculature ex vivo, in vivo, and in silico. Ultimately, we propose to weave these research threads
together to create a systems-level view of physiological capillary-to-arteriole/pial artery signaling in the brain,
and test the concept that gradual degradation of this sensory web and the attendant progressive decay of
cerebrovascular function contributes to small vessel diseases of the brain.
项目概要
大脑中的神经元的能量储备有限,因此依赖于“及时”的传递策略,其中
活跃的神经元向大脑微血管发出信号,增加局部脑血流量 (CBF),重新供应
尽管进行了大量研究,但其机制仍不清楚。
神经代谢需求和血管供应之间的功能联系的基础,称为
神经血管耦合(NVC)仍然知之甚少,流向大脑的血流是由实质细胞介导的。
小动脉和数百英里的毛细血管,极大地扩展了灌注范围。
提出了支持脑毛细血管作为神经活动感知网络这一概念的证据,
证明脑毛细血管内皮细胞(cEC)能够启动电
(超极化)信号响应神经元活动,向上游传播导致进食扩张
我们已经建立了机制。
该电信号的基础,表明神经元和/或星形胶质细胞来源的钾 (K+) 是关键
介体并确定强内向整流 K+ 通道 Kir2.1 作为关键分子。
最近发现了基于钙 (Ca2+) 信号传导的第二种基本 NVC 机制,
独特的动力学和调节特征,也在脑毛细血管中起作用,并且可以由假定的启动
我们进一步发现了NVC介导的前列腺素E2(PGE2)是由Gq蛋白启动的机制。
耦合受体信号传导并由膜磷脂酰肌醇 4,5- 的动态变化介导
二磷酸盐 (PIP2) 水平控制电信号和 Ca 信号传导之间的平衡。
2+
数据支持通过 Ca2+ 依赖性内皮一氧化氮信号传导和周细胞进行气体传输的作用
调节 NVC 中毛细血管血流的介导调节 该提案的直接目标是
在分子、Ca2+ 和相关调节信号机制方面创建一个综合视图
通过检查它们在日益复杂的部分中的操作来提高生物物理和计算建模水平
最终,我们建议编织这些研究线索。
共同创建大脑中生理毛细血管到小动脉/软脑膜动脉信号传导的系统级视图,
并测试这种感觉网逐渐退化以及随之而来的逐渐衰退的概念
脑血管功能导致大脑小血管疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK T NELSON其他文献
MARK T NELSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK T NELSON', 18)}}的其他基金
Determining How Amyloid-β Fibril Polymorphism Influences Cellular Toxicity
确定淀粉样蛋白-β原纤维多态性如何影响细胞毒性
- 批准号:
10982804 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
- 批准号:
9434413 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Ion Channel Dysfunction in Small Vessel Disease of the Brain
脑小血管疾病中的离子通道功能障碍
- 批准号:
10596592 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Ion channel dysfunction in small vessel disease of the brain
脑小血管疾病中的离子通道功能障碍
- 批准号:
9912206 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Ion channel dysfunction in small vessel disease of the brain
脑小血管疾病中的离子通道功能障碍
- 批准号:
10376066 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Capillaries as a Sensory Web that Controls Cerebral Blood Flow in Health and Disease
毛细血管作为控制健康和疾病中脑血流的感觉网
- 批准号:
10541111 - 财政年份:2019
- 资助金额:
$ 90.6万 - 项目类别:
Regulations of myoendothelial function by signaling microdomains in hypertension
高血压中信号微结构域对肌内皮功能的调节
- 批准号:
8761552 - 财政年份:2014
- 资助金额:
$ 90.6万 - 项目类别:
Regulations of Myoendothelial Function By Signaling Microdomains in Hypertension
高血压中信号微域对肌内皮功能的调节
- 批准号:
9078803 - 财政年份:2014
- 资助金额:
$ 90.6万 - 项目类别:
Regulations of Myoendothelial Function By Signaling Microdomains in Hypertension
高血压中信号微域对肌内皮功能的调节
- 批准号:
8894077 - 财政年份:2014
- 资助金额:
$ 90.6万 - 项目类别:
相似国自然基金
基于星形胶质细胞介导Th17/Treg免疫平衡探讨电针调控缺血性脑卒中神经血管耦联的机制
- 批准号:82305361
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAI3抑制脑缺血后反应性星形胶质细胞向C3+亚群转化保护神经血管单元的机制研究
- 批准号:82371336
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
JAK/STAT3调控星形胶质细胞表型在急性缺血性脑小血管病白质损伤中的作用和机制
- 批准号:82301661
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NCAM通过DNMT1介导的星形胶质细胞DNA甲基化促进神经血管偶联的机制研究
- 批准号:82301344
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
放射性脑损伤中IGF1R-MTOR通路调控A1型星形胶质细胞表型极化介导微血管损伤的机制研究
- 批准号:82271410
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
A Vascularized Blood-Brain Barrier Model for In Vitro Testing of Drug and Immunotherapy Delivery
用于药物和免疫治疗递送体外测试的血管化血脑屏障模型
- 批准号:
10699597 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Exploring brain perivascular fibroblasts in health and cerebral amyloid angiopathy
探索大脑血管周围成纤维细胞在健康和脑淀粉样血管病中的作用
- 批准号:
10739076 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
A Vascularized Blood-Brain Barrier Model for In Vitro Testing of Drug and Immunotherapy Delivery
用于药物和免疫治疗递送体外测试的血管化血脑屏障模型
- 批准号:
10699597 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Sleep-dependent mechanisms of improving cerebral blood flow and reducing Alzheimer's disease progression by photobiomodulation with near-infrared light
通过近红外光光生物调节改善脑血流量和减少阿尔茨海默病进展的睡眠依赖性机制
- 批准号:
10655017 - 财政年份:2023
- 资助金额:
$ 90.6万 - 项目类别:
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10673158 - 财政年份:2022
- 资助金额:
$ 90.6万 - 项目类别: