Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
基本信息
- 批准号:10303973
- 负责人:
- 金额:$ 28.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdoptedAlgorithmsBindingBiochemicalBiomedical ResearchBiosensing TechniquesBiosensorCommunicationCoupledCrystallizationDetectionDevelopmentDiagnosticDiseaseElectronicsEnzyme-Linked Immunosorbent AssayEukaryotic CellFood SafetyFoundationsIndividualIndustryLabelLightMeasuresMedicalMedical ResearchMedicineMethodsOpticsPharmacologic SubstancePhotonsPlayPublic HealthPumpRaman Spectrum AnalysisRefractive IndicesResearchResolutionRoleSecuritySemiconductorsSignal TransductionSilicon DioxideSpectrum AnalysisStructureSurfaceSystemTechniquesTechnologyTestingTimeUnited States National Institutes of HealthWorkbaseclinical Diagnosisclinical applicationcostdesigndetection sensitivitydisease diagnosisimprovedinnovationlight intensitymetal oxidemicrosensormicrosystemsnanophotonicnovelphotonicsprotein biomarkersprotein protein interactionreconstructionresidencesensorsensor technologysingle moleculetool
项目摘要
PROJECT SUMMARY/ABSTRACT
Microsystems for the detection of biomolecules can play important roles in biomedical research, clinical
diagnosis, food safety, homeland security and pharmaceutical testing. The research objective of this
proposal is to develop an ultrasensitive and high-throughput complementary metal–oxide–
semiconductor (CMOS) sensors including over 10,000 sensor units on a 1-inch chip that could
provided high-resolution spectroscopic information with combined features of label-free, high
sensitivity, high throughput, small size, and easy integration with existing electronics. Each sensor unit
is composed for surface-functionalized silica-based high-quality whispering-gallery-mode (WGM) resonators
that approximate the size of eukaryotic cells for ultra-sensitive label-free biosensing of specific proteins,
biomarkers and protein-protein interactions. The basis for the technology is the physical associations and
interactions of biomolecules on a microresonator surface alter the residence time of photons in a way that can
be measured and quantified by a novel photonic crystal (PC) integrated CMOS spectrometer. Moreover, the
proposed PC-CMOS is expected to achieve a video-frame rate of spectroscopy with a large field of view (FOV)
(2 cm × 2 cm) and high spectral resolution (1 pm). The unique features of the proposed sensor lie in two
advantages: (1) ultrasensitivity enabled by significantly enhanced light-matter interactions in high-quality WGM
optical microresonators; and (2) high-throughput sensing mechanisms adopted from CMOS originally
developed in the semiconductor industry for communications and electronic products. Our objective will be
achieved by completing the following three specific aims. Aim 1 will develop PC slab spectrometer on a CMOS
chip for wide-field high-resolution spectroscopy. Aim 2 will design, fabricate, measure, and optimize the
surface-grating-waveguide-coupled WGM microsensor arrays. Aim 3 will demonstrate resonance-enhanced
high-resolution CMOS spectrometer. The proposed research contains three main innovations: (1) the
novel WGM sensor arrays are expected to offer several orders of magnitude higher sensitivity than existing
sensing technologies, such as ELISA; (2) PC slab spectrometer on a CMOS chip, which enables a single-shot
detection of over 10,000 optical mode spectra of the WGM microsensors and resonance-enhanced Raman
spectroscopy; (3) integrating ultrasensitive WGM sensors with CMOS technologies to realize a new system
leading to a disruptive technology for sensing applications where high sensitivity and high throughput are
desired. This project is significant because successful completion of this work will lay the foundation for the
development of a new biosensor with great potential to advance clinical diagnosis and biomedical research by
revolutionizing conventional sensing technologies by leveraging the existing technologies in semiconductor
industries. If successful, the technology developed in this project will be able to serve as a powerful tool for NIH
R01 projects targeting for an in-depth understanding of specific diseases or medical problems.
项目概要/摘要
用于检测生物分子的微系统可以在生物医学研究、临床研究中发挥重要作用
诊断、食品安全、国土安全和药物测试。
建议开发一种超灵敏和高通量的互补金属氧化物
半导体 (CMOS) 传感器,在 1 英寸芯片上包含超过 10,000 个传感器单元,
提供高分辨率光谱信息,具有无标记、高
灵敏度高、吞吐量高、尺寸小且易于与现有电子设备集成。
专为表面功能化二氧化硅基高质量回音壁模式 (WGM) 谐振器而设计
近似真核细胞的大小,用于特定蛋白质、蛋白质的超灵敏无标记生物传感
生物标志物和蛋白质-蛋白质相互作用是该技术的基础。
微谐振器表面上生物分子的相互作用改变光子的停留时间,从而可以
通过新型光子晶体 (PC) 集成 CMOS 光谱仪进行测量和量化。
所提出的 PC-CMOS 有望实现大视场 (FOV) 光谱的视频帧率
(2 cm × 2 cm) 和高光谱分辨率 (1 pm) 该传感器的独特之处在于两个。
优点:(1) 通过显着增强高质量 WGM 中的光与物质相互作用实现超灵敏
光学微谐振器;(2)最初采用CMOS的高通量传感机制
我们的目标是在通信和电子产品的半导体行业中开发。
目标 1 将开发 CMOS 上的 PC 平板光谱仪
Aim 2 将设计、制造、测量和优化宽视场高分辨率光谱芯片。
Aim 3 将展示共振增强型表面光栅波导耦合 WGM 微传感器阵列。
高分辨率 CMOS 光谱仪的研究包含三个主要创新点:(1)
新型 WGM 传感器阵列预计将提供比现有传感器高几个数量级的灵敏度
传感技术,例如 ELISA;(2) CMOS 芯片上的 PC 平板光谱仪,可实现单次拍摄
检测 WGM 微传感器和共振增强拉曼的 10,000 多个光学模式光谱
(3) 将超灵敏 WGM 传感器与 CMOS 技术集成以实现新系统
为高灵敏度和高吞吐量的传感应用带来颠覆性技术
该项目意义重大,因为这项工作的成功完成将为下一步的发展奠定基础。
开发一种新型生物传感器,具有推进临床诊断和生物医学研究的巨大潜力
利用半导体现有技术彻底改变传统传感技术
如果成功,该项目开发的技术将能够成为 NIH 的强大工具。
R01项目旨在深入了解特定疾病或医疗问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Yang其他文献
Lan Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Yang', 18)}}的其他基金
Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
- 批准号:
10683085 - 财政年份:2021
- 资助金额:
$ 28.85万 - 项目类别:
Resonance enhanced CMOS sensors for high-throughput sensing
用于高通量传感的共振增强型 CMOS 传感器
- 批准号:
10450190 - 财政年份:2021
- 资助金额:
$ 28.85万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Using implementation mapping to maximize equity of school-based policies for obesity prevention
利用实施规划最大限度地提高基于学校的肥胖预防政策的公平性
- 批准号:
10572736 - 财政年份:2023
- 资助金额:
$ 28.85万 - 项目类别:
Tele-Sox: A Tele-Medicine solution based on wearables and gamification to prevent Venous thromboembolism in Oncology Geriatric Patients
Tele-Sox:基于可穿戴设备和游戏化的远程医疗解决方案,用于预防肿瘤老年患者的静脉血栓栓塞
- 批准号:
10547300 - 财政年份:2023
- 资助金额:
$ 28.85万 - 项目类别:
Project 1 - Surveillance and monitoring systems to identify strategies to improve perinatal practices [Parent Title: PREVENTING INFANT INFECTIONS WITH IMPLEMENTATION SCIENCE IN MALAWI]
项目 1 - 监测和监测系统,以确定改善围产期实践的策略[父标题:马拉维通过实施科学预防婴儿感染]
- 批准号:
10701195 - 财政年份:2023
- 资助金额:
$ 28.85万 - 项目类别:
The Impact of School Meal Delivery on Behavioral Disorders among Children in Health Disparity Populations
学校供餐对健康差异人群中儿童行为障碍的影响
- 批准号:
10728640 - 财政年份:2023
- 资助金额:
$ 28.85万 - 项目类别:
Preventing School Exclusion and Opioid Misuse: Effectiveness of the Inclusive Skill-building Learning Approach (ISLA)
防止学校排斥和阿片类药物滥用:包容性技能建设学习方法 (ISLA) 的有效性
- 批准号:
10775597 - 财政年份:2023
- 资助金额:
$ 28.85万 - 项目类别: