Leveraging artificial intelligence to develop novel tools for studying infant brain development

利用人工智能开发研究婴儿大脑发育的新工具

基本信息

项目摘要

PROJECT SUMMARY. The first 24-months of human life are dynamic, characterized by rapid growth, and increasingly recognized as crucial for establishing cognitive abilities and behaviors that last a lifetime. However, little is known about trajectories of structural and functional brain development during this sensitive period in typically developing infants, and even less is known about how deviations in these trajectories relate to emerging cognition and behavior or predict later developmental outcomes. This is partially due to current technical limitations on quantification of brain structure and function in infants via magnetic resonance imaging (MRI) – an important, non-invasive approach to the study of developmental neuroscience. Currently there are insufficient methods to analyze infant MRI scans across the first 24 months of life, especially for brain segmentation – the first and critical step for virtually all quantitative analyses across MRI modalities. Without accurate and automated segmentation, infant MRI analysis is prone to systematic errors and is labor-intensive, limiting the rigor and reproducibility of infant MRI research. This limitation curtails and delays the utility of large-scale infant MRI datasets in the foreseeable future. Addressing these research gaps would significantly advance efforts toward early identification of developmental delays and/or disorders. I propose developing AI-based infant neuroimaging analysis tools for studying the early human brain development via two large-scale datasets: the NIH funded Baby Connectome Project and a centralized MRI data repository from Environmental Influence on Child Health Outcomes. In my pilot studies, I have shown the show good-to-excellent agreement with ground-truth labels from two different sources, and superior performance compared to other commonly used segmentation methods. My first aim is to develop an automated and generalizable brain segmentation pipeline with 3D convolutional neural networks – an AI approach. This segmentation tool can accommodate and process infant brain scans spanning each month over the first 2 years of life. The final AI-based pipeline will be rigorously validated internally, and tested externally. We will release the pipeline as a user-friendly, web-based interface for researchers to use in scientific community. In Aim 2, I will delineate the growth trajectories of regional brain morphometrics, major functional networks, and measure their relationships to neuropsychological functions during the first 24months of life via data from BCP. In Aim 3, I will leverage two different approaches (AI and LPCA) to predict the developmental outcomes assessed up to 3 years old. with the first-year longitudinal multimodal MRI scans from BCP. The interdisciplinary training phase of the award, conducted in the laboratory of Dr. Jonathan Posner at Columbia University, includes a comprehensive plan for the acquisition of technical and professional skills that will enable my transition to research independence. The successful completion of this project will yield reliable tools and novel data-driven methods for studying early brain developmental, fill critical knowledge gaps of early development, and advance efforts toward early identification of developmental delays and disorders.
项目摘要。人类生命的前 24 个月是动态的,其特点是快速生长,并且 越来越多的人认识到对于建立持续一生的认知能力和行为至关重要。 人们对这一敏感时期大脑结构和功能发育的轨迹知之甚少。 通常是发育中的婴儿,而关于这些轨迹的偏差与新兴婴儿之间的关系则知之甚少。 认知和行为或预测以后的发展结果部分归因于当前的技术。 通过磁共振成像 (MRI) 量化婴儿大脑结构和功能的局限性 重要的、非侵入性的方法来研究发育神经科学目前还不够。 分析婴儿出生后 24 个月内 MRI 扫描的方法,尤其是大脑分割 - 在没有准确和自动化的情况下,几乎所有 MRI 模式定量分析的第一步也是关键的一步。 分割,婴儿 MRI 分析容易出现系统错误,并且是劳动密集型的,限制了严谨性和 婴儿 MRI 研究的可重复性这一限制限制并延迟了大规模婴儿 MRI 的实用性。 在可预见的未来,解决这些研究差距将极大地推进努力。 我建议开发基于人工智能的婴儿神经影像学。 通过两个大型数据集研究人类早期大脑发育的分析工具:NIH 资助的 Baby 连接组项目和环境对儿童健康影响的集中式 MRI 数据存储库 在我的试点研究中,我已经证明该节目与真实标签的一致性非常好。 两个不同的来源,并且与其他常用的分割方法相比具有优越的性能。 第一个目标是开发具有 3D 卷积神经网络的自动化且可泛化的大脑分割流程 网络——一种人工智能方法,可以适应和处理婴儿的大脑扫描。 在生命的前两年中,每个月都会对最终的基于人工智能的管道进行严格的内部验证,并且 我们将把该管道作为用户友好的、基于网络的界面发布,供研究人员使用。 在目标 2 中,我将描绘主要区域大脑形态测量的生长轨迹。 功能网络,并测量其在前 24 个月内与神经心理功能的关系 在目标 3 中,我将利用两种不同的方法(AI 和 LPCA)来预测生命。 通过第一年的纵向多模态 MRI 扫描评估 3 岁以下的发育结果。 BCP。该奖项的跨学科培训阶段在 Jonathan Posner 博士的实验室进行。 哥伦比亚大学,包括一个获取技术和专业技能的综合计划, 将使我能够过渡到独立研究。该项目的成功完成将产生可靠的成果。 用于研究早期大脑发育的工具和新颖的数据驱动方法,填补了早期大脑发育的关键知识空白 发育,并努力尽早发现发育迟缓和障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YUN WANG其他文献

YUN WANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YUN WANG', 18)}}的其他基金

Leveraging artificial intelligence to develop novel tools for studying infant brain development
利用人工智能开发研究婴儿大脑发育的新工具
  • 批准号:
    10554951
  • 财政年份:
    2022
  • 资助金额:
    $ 1.33万
  • 项目类别:
Structural Basis of Biomacromolecular Function
生物大分子功能的结构基础
  • 批准号:
    6559239
  • 财政年份:
  • 资助金额:
    $ 1.33万
  • 项目类别:
Search for the Structural Basis of Biomacromolecular
寻找生物大分子的结构基础
  • 批准号:
    6951666
  • 财政年份:
  • 资助金额:
    $ 1.33万
  • 项目类别:
Search for the Structural Basis of Biomacromolecular
寻找生物大分子的结构基础
  • 批准号:
    6763711
  • 财政年份:
  • 资助金额:
    $ 1.33万
  • 项目类别:
STRUCTURE OF BIOMACROMOLECULAR FUNCTION & ACTIVITY
生物大分子功能结构
  • 批准号:
    6422170
  • 财政年份:
  • 资助金额:
    $ 1.33万
  • 项目类别:
Search for the Structural Basis of Biomacromolecular Fun
寻找生物大分子乐趣的结构基础
  • 批准号:
    7052687
  • 财政年份:
  • 资助金额:
    $ 1.33万
  • 项目类别:
Search for the Structural Basis of Biomacromolecular Fun
寻找生物大分子乐趣的结构基础
  • 批准号:
    7338503
  • 财政年份:
  • 资助金额:
    $ 1.33万
  • 项目类别:

相似国自然基金

单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
  • 批准号:
    62374057
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
Ti3C2Tx诱导锌金属负极表面三维重构及锌沉积调控新机制研究
  • 批准号:
    52372236
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
  • 批准号:
    12304019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
  • 批准号:
    52361040
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
  • 批准号:
    12304042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Effects of Nicotine Concentration Levels in E-cigarettes on Biomarkers of Exposure to Toxicants and Tobacco Use Behaviors
电子烟中尼古丁浓度水平对有毒物质暴露和烟草使用行为生物标志物的影响
  • 批准号:
    10678555
  • 财政年份:
    2023
  • 资助金额:
    $ 1.33万
  • 项目类别:
Glove-based Tactile Streaming of Braille Characters and Digital Images for the Visually Impaired
为视障人士提供基于手套的盲文字符和数字图像触觉流传输
  • 批准号:
    10601900
  • 财政年份:
    2023
  • 资助金额:
    $ 1.33万
  • 项目类别:
ShEEP Request for High Resolution Desktop MicroCT System
SheEEP 请求高分辨率桌面 MicroCT 系统
  • 批准号:
    10538047
  • 财政年份:
    2022
  • 资助金额:
    $ 1.33万
  • 项目类别:
Reverse Engineering the Extracellular Neighborhood to Support the Functional Tissue Unit: A Use Case to Restore Ovarian Function
对细胞外邻域进行逆向工程以支持功能组织单位:恢复卵巢功能的用例
  • 批准号:
    10689815
  • 财政年份:
    2022
  • 资助金额:
    $ 1.33万
  • 项目类别:
Adjustable prosthetic sockets for children and adolescents with lower limb loss to accommodate growth
为下肢缺失的儿童和青少年提供可调节假肢接受腔以适应生长
  • 批准号:
    10658207
  • 财政年份:
    2022
  • 资助金额:
    $ 1.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了