Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
基本信息
- 批准号:10300937
- 负责人:
- 金额:$ 67.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAggressive behaviorAlgorithmsAmygdaloid structureAnimalsBehaviorBehavior ControlBehavioralBiological ModelsBrainCell NucleusCellsClassificationCodeComputing MethodologiesDataDecision MakingEncapsulatedEquilibriumFemaleFunctional ImagingGoalsHumanHypothalamic structureImageIndividualKnowledgeLogicMachine LearningMapsMeasurementMeasuresMedialMental disordersMidbrain structureModelingMotivationMusNeuronsNuclearOrganismOutputPartner in relationshipPhasePhenotypePopulationPopulation DynamicsPreoptic AreasPropertyPublic HealthReproductionReproductive BehaviorResearchResolutionRewardsRoleSex BehaviorShapesSiteSocial BehaviorSocial ControlsSocial InteractionStructureSystemTestingVideo RecordingWorkbasebehavioral responsecell typecellular targetingexperimental studyimaging studyin vivoinnovationinsightmachine learning algorithmmalemidbrain central gray substanceneural circuitneuroregulationnovelnovel strategiesoptogeneticspredictive modelingprogramsrelating to nervous systemreproductivesex
项目摘要
Project Summary/Abstract
This proposal responds to an FOA (RFA-NS-18-030) calling for 1) “novel approaches to understand neural
circuitry associated with well-defined social behaviors;” 2) Distributed circuits that contribute to the coordination
of motivational states and reward behavior;” 3) “Empirical and analytical approaches to understand how
behavioral states are emergent properties of the interaction of neurons, circuits and networks.” The study of
subcortical circuits that control conserved, naturalistic behaviors is crucial to understanding brain function. We
aim to understand how dynamic interactions between different circuit nodes in the Hypothalamic-Extended
Amygdala Decision (“HEAD”) network control innate social behavior decisions, e.g., between aggressive and
reproductive behaviors. We propose an integrated approach to this problem that combines microendoscopic
imaging (MEI) of genetically identified neuronal subpopulations with automated, machine learning-based
classification of social behavior in freely moving mice, together with functional perturbations of neuronal activity
in vivo. Our broad, long-term objective is to understand how distributed activity among interconnected
structures in the HEAD network controls moment-to-moment decisions between competing goal-directed
behaviors that are crucial for the survival of animals and humans. The central objective of this proposal is to
understand how information flows through this network during social interactions, and is decoded to control the
decision to engage in reproductive vs. aggressive social behaviors. To understand how activity in “upstream”
nodes controls neural representations in “downstream” nodes, we will implement a novel approach combining
reversible chemogenetic inhibition of the former with concurrent imaging of neuronal population activity in the
latter. The rationale for this approach is that an understanding of the system requires characterizing the effects
of functional manipulations on both behavioral and circuit-level phenotypes. To achieve our objective, we will
first characterize the neural coding of behavior and conspecific sex identity in multiple nodes of the extended
amygdala, using single-site microendoscopic imaging and computational analytic approaches (Aim 1);
determine how perturbations in the activity of such nodes influence representations in hypothalamic nodes
(Aim 2); investigate the roles of intra- and inter-nuclear interactions in determining the balance of activity
between aggression and reproduction-promoting hypothalamic nodes (Aim 3); determine how this balance is
decoded by downstream mid-brain structures to determine the type of social behavior to express (Aim 4). This
contribution is significant because it represents a systems-level approach to understanding how a subcortical
network controls behavioral decision-making. The contribution is innovative because it integrates analysis of
neuronal population activity, quantitative measurement of naturalistic social behavior and functional
perturbations of activity in specific neuronal subpopulations to gain insight into how distributed neural circuits
control survival behaviors, in a context that is relevant to maladaptations causing human psychiatric disorders.
项目概要/摘要
该提案响应了 FOA (RFA-NS-18-030) 的要求:1)“理解神经网络的新方法
与明确的社会行为相关的电路;2)有助于协调的分布式电路
动机状态和奖励行为;”3)“了解如何进行的经验和分析方法
行为状态是神经元、回路和网络相互作用的自然属性。”
控制保守的自然行为的皮层下回路对于理解大脑功能至关重要。
旨在了解下丘脑扩展中不同电路节点之间的动态相互作用
杏仁核决策(“HEAD”)网络控制先天的社会行为决策,例如,攻击性和攻击性之间的决策
我们提出了一种结合显微内窥镜的综合方法来解决这个问题。
使用基于机器学习的自动化技术对基因识别的神经元亚群进行成像 (MEI)
自由活动小鼠的社会行为分类以及神经活动的功能扰动
我们广泛的长期目标是了解分布式活动如何相互关联。
HEAD 网络中的结构控制相互竞争的目标导向之间的即时决策
该提案的核心目标是对动物和人类的生存至关重要的行为。
了解信息在社交互动过程中如何流经该网络,并被解码以控制
决定进行生殖行为还是攻击性社会行为 了解“上游”的活动如何。
节点控制“下游”节点中的神经表示,我们将实现一种结合
前者的可逆化学遗传学抑制,同时对神经元群活动进行成像
后者的基本原理是对系统的理解需要描述其影响。
为了实现我们的目标,我们将对行为和电路水平的表型进行功能操作。
首先描述扩展的多个节点中行为和同种性别认同的神经编码
杏仁核,使用单点显微内窥镜成像和计算分析方法(目标 1);
确定此类节点活动的扰动如何影响下丘脑节点的表征
(目标 2);研究核内和核间相互作用在确定活性平衡中的作用
攻击性和促进生殖的下丘脑节点之间的平衡(目标 3);
由下游中脑结构解码以确定要表达的社会行为类型(目标 4)。
贡献是重要的,因为它代表了一种系统级方法来理解皮层下如何
网络控制行为决策的贡献是创新的,因为它集成了分析。
神经群体活动、自然社会行为和功能的定量测量
特定神经亚群活动的扰动,以深入了解分布式神经回路的分布
在与导致人类精神疾病的适应不良相关的背景下控制生存行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David J Anderson其他文献
Cell Type-specific Regulation of Choline Acetyltransferase Gene Expression ROLE OF THE NEURON-RESTRICTIVE SILENCER ELEMENT AND CHOLINERGIC-SPECIFIC ENHANCER SEQUENCES*
胆碱乙酰转移酶基因表达的细胞类型特异性调节神经元限制性沉默元件和胆碱能特异性增强序列的作用*
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
P. Lönnerberg;C. Schoenherr;David J Anderson;C. Ibáñez - 通讯作者:
C. Ibáñez
Expression analysis and subcellular localization of the Arabidopsis thaliana G-protein β-subunit AGB1
拟南芥 G 蛋白 β 亚基 AGB1 的表达分析和亚细胞定位
- DOI:
10.1007/s00299-007-0356-1 - 发表时间:
2007-05-10 - 期刊:
- 影响因子:6.2
- 作者:
David J Anderson;J. Botella - 通讯作者:
J. Botella
Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants
使用完整质粒或最小盒进行农杆菌和粒子轰击生产高表达、低拷贝转基因植物的比较
- DOI:
10.1007/s11248-012-9639-6 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:3
- 作者:
M. Jackson;David J Anderson;R. Birch - 通讯作者:
R. Birch
The N-terminal presequence from F1-ATPase β-subunit of Nicotiana plumbaginifolia efficiently targets green fluorescent fusion protein to the mitochondria in diverse commercial crops.
来自白花烟草 F1-ATPase β-亚基的 N 端前序列有效地将绿色荧光融合蛋白靶向多种经济作物的线粒体。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3
- 作者:
A. Gnanasambandam;David J Anderson;M. P. Purnell;L. Nielsen;S. Brumbley - 通讯作者:
S. Brumbley
NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis
- DOI:
10.1038/2431 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:30.8
- 作者:
Zhou;A. Paquette;David J Anderson - 通讯作者:
David J Anderson
David J Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David J Anderson', 18)}}的其他基金
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
- 批准号:
10461937 - 财政年份:2021
- 资助金额:
$ 67.54万 - 项目类别:
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
- 批准号:
10685483 - 财政年份:2021
- 资助金额:
$ 67.54万 - 项目类别:
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
- 批准号:
10685483 - 财政年份:2021
- 资助金额:
$ 67.54万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10415149 - 财政年份:2020
- 资助金额:
$ 67.54万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10629355 - 财政年份:2020
- 资助金额:
$ 67.54万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10037486 - 财政年份:2020
- 资助金额:
$ 67.54万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10226273 - 财政年份:2020
- 资助金额:
$ 67.54万 - 项目类别:
Multimodal and Supramodal processing of threatening emotional stimuli
威胁性情绪刺激的多模态和超模态处理
- 批准号:
10093134 - 财政年份:2017
- 资助金额:
$ 67.54万 - 项目类别:
Development of a scalable methodology for imaging neuropeptide release in the brain
开发一种可扩展的大脑神经肽释放成像方法
- 批准号:
9056190 - 财政年份:2015
- 资助金额:
$ 67.54万 - 项目类别:
相似国自然基金
羞怯个体高攻击性的心理与神经生理成因
- 批准号:31700970
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
青少年攻击行为表型差异的机制研究:基于高通量测序数据的挖掘与应用
- 批准号:81573172
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
家犬驯化中与攻击性行为相关的人工选择研究
- 批准号:31201712
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular biomarkers of future aggressive behavior in pituitary tumors
垂体瘤未来攻击行为的分子生物标志物
- 批准号:
10650948 - 财政年份:2023
- 资助金额:
$ 67.54万 - 项目类别:
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
- 批准号:
10834339 - 财政年份:2023
- 资助金额:
$ 67.54万 - 项目类别:
Characterizing Bias and Care Disparities with Physical Restraint Use in the Emergency Setting Using Natural Language and Cognitive Data
使用自然语言和认知数据描述紧急情况下使用身体约束的偏见和护理差异
- 批准号:
10633167 - 财政年份:2022
- 资助金额:
$ 67.54万 - 项目类别:
Elucidating transcriptional and epigenetic regulators of aggressive cutaneous T cell lymphoma
阐明侵袭性皮肤 T 细胞淋巴瘤的转录和表观遗传调节因子
- 批准号:
10582529 - 财政年份:2022
- 资助金额:
$ 67.54万 - 项目类别:
Using Wearable Devices and Machine Learning to Forecast Preschool Tantrums and Identify Clinically Significant Variants.
使用可穿戴设备和机器学习来预测学龄前发脾气并识别具有临床意义的变异。
- 批准号:
10655284 - 财政年份:2022
- 资助金额:
$ 67.54万 - 项目类别: