Label-Free, Longitudinal, Multi-Metric Viability Imaging of 3D Tissue Spheroid Array
3D 组织球体阵列的无标记、纵向、多指标活力成像
基本信息
- 批准号:10295612
- 负责人:
- 金额:$ 35.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-09 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedBiological AssayBiopsyCancer PatientCell AdhesionCell Culture TechniquesCell NucleusCell SurvivalCellsChemicalsChemosensitivity AssayClinical TrialsCombined Modality TherapyCultured CellsDataData SetDevelopmentDiffusionDimensionsDoseDrug CombinationsDrug usageEnd Point AssayEthanolFractalsFutureGenomicsGuidelinesHourImageImaging technologyIn VitroIndividualInvestigationLabelLungMalignant NeoplasmsMalignant neoplasm of liverMeasurementMeasuresMedicineMembraneMetabolismMethodsMicroscopyOligomycinsOncologyOptical Coherence TomographyOpticsOutcomePaclitaxelPancreasPatient MonitoringPatientsPharmaceutical PreparationsPhysiciansPilot ProjectsPopulationPrecision Medicine InitiativeProcessResearchSamplingSensitivity and SpecificitySeriesSignal TransductionSpecificitySurfaceTechniquesTechnologyTestingTimeTissue EngineeringTissuesToxicity TestsTumor Cell LineValidationVariantattenuationbasecancer therapycancer typecell typechemotherapyclinical applicationdesigndrug discoverydrug testingimage processingimaging studyin vivoindividual patientindividualized medicineinnovationlongitudinal datasetmalignant breast neoplasmneoplastic cellnovel strategiesoptimal treatmentspatient populationpersonalized medicineprecision medicineprecision oncologypreventresponsestatisticsthree dimensional cell culturetumortumor microenvironment
项目摘要
SUMMARY
When selecting cancer therapy, physicians generally begin with first-line treatment options and monitor patient
progress on a watch-and-wait basis, following a set of guidelines based on clinical trials from a large patient
population. But this traditional method has been questioned on whether it provides individual patients with the
optimal treatment. To better find a matching treatment individually, a concept called precision cancer medicine
or personalized cancer medicine has been studied. Among other approaches, functional precision medicine
directly tests chemotherapy options on tumor cells biopsied from a patient to find the best matching treatment
for the specific patient.
This promising approach, however, has not been widely adopted by clinicians because the tumor
microenvironment in a lab differed from the one within the patient’s body, leading to inconsistent drug
responses between the sample and patient, and the quantity of biopsied cells is generally insufficient for a
reliable number of options to be tested. The first problem is being addressed by recent advances in three-
dimensional (3D) cell culture techniques, which better mimic the body’s microenvironment in a lab. But the
second problem, the limited number of testable options, is mainly due to limitations in the current assay
techniques that assess chemosensitivity in 3D culture. With most current assays, a sample can only be tested
once, and multiple drugs with different mechanisms of action cannot be simultaneously tested by a single
assay. Combined, these limitations exponentially reduce the number of testable options when involving
multiple assessment time points to design a sequential therapy or when increasing the number of drugs to test
a combination therapy.
Here, we will develop a new technique for the assessment of chemosensitivity in 3D culture, by maximizing the
potential of a label-free 3D microscopy technology, called optical coherence tomography (OCT). The majority
of prior OCT research measured only one or two types of signals and showed the signals corresponding to
only a single type of cell viability disruption process in each study. But this approach has led to a concern
about specificity (i.e., other types of processes than the one tested in the study can generate similar OCT
signals). This low specificity, along with unclear mechanisms of viability assessment, have prevented OCT
methods from being adopted for the promising concept of functional precision medicine.
Therefore, we will develop at least 18 different types of OCT signals and establish their sensitivity and
specificity to four major types of viability disruption processes. The feasibility of this approach has been
strongly supported by a pilot study where we imaged and analyzed more than 6,000 3D-cultured cell
spheroids. This R01 project will image and analyze up to 100,000+ spheroids for an unprecedentedly systemic
investigation of the comprehensive range of OCT signal types.
概括
在选择癌症治疗时,医生通常从一线治疗方案开始并监测患者
遵循一系列基于大患者临床试验的指南,在观察和等待的基础上取得进展
但这种传统方法是否能够为个体患者提供治疗受到质疑。
为了更好地找到个体匹配的治疗方法,这个概念被称为精准癌症医学。
或个性化癌症医学已被研究,其中包括功能性精准医学。
直接对患者活检的肿瘤细胞进行化疗方案测试,以找到最佳匹配的治疗方案
针对特定患者。
然而,这种有希望的方法尚未被殖民者广泛采用,因为肿瘤
实验室的微环境与患者体内的微环境不同,导致药物不一致
样本和患者之间的反应,并且活检细胞的数量通常不足以进行
需要测试的可靠数量的选项正在通过三个方面的最新进展得到解决。
三维(3D)细胞培养技术,可以更好地模拟实验室中的人体微环境。
第二个问题,可测试选项的数量有限,主要是由于当前测定的限制
评估 3D 培养中化学敏感性的技术在大多数当前检测中只能测试样品。
一次不能同时测试多种不同作用机制的药物
综合限制,这些在涉及时会成倍地减少可测试选项的数量。
设计序贯疗法或增加要测试的药物数量时的多个评估时间点
联合疗法。
在这里,我们将开发一种新技术,通过最大化 3D 培养中的化学敏感性评估
无标记 3D 显微技术(称为光学相干断层扫描 (OCT))的潜力。
之前的 OCT 研究仅测量了一种或两种类型的信号,并显示了对应于
每项研究中只有一种类型的细胞活力破坏过程,但这种方法引起了人们的担忧。
关于特异性(即,除研究中测试的过程之外的其他类型的过程可以生成类似的 OCT
这种低特异性以及不明确的活力评估机制阻碍了 OCT。
功能性精准医学这一有前途的概念被采用的方法。
因此,我们将开发至少 18 种不同类型的 OCT 信号并建立它们的灵敏度和
四种主要类型的可行性破坏过程的特异性。
得到一项试点研究的大力支持,我们对 6,000 多个 3D 培养细胞进行了成像和分析
该 R01 项目将对多达 100,000 多个球体进行成像和分析,以实现前所未有的系统性。
对 OCT 信号类型的综合范围进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonghwan Lee其他文献
Jonghwan Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonghwan Lee', 18)}}的其他基金
Label-Free, Longitudinal, Multi-Metric Viability Imaging of 3D Tissue Spheroid Array
3D 组织球体阵列的无标记、纵向、多指标活力成像
- 批准号:
10665630 - 财政年份:2021
- 资助金额:
$ 35.03万 - 项目类别:
Label-Free, Longitudinal, Multi-Metric Viability Imaging of 3D Tissue Spheroid Array
3D 组织球体阵列的无标记、纵向、多指标活力成像
- 批准号:
10448442 - 财政年份:2021
- 资助金额:
$ 35.03万 - 项目类别:
Long-Term Tracking of Cerebral Microvascular Structural and Functional Alterations between Normal and Alzheimer's Aging
长期跟踪正常衰老和阿尔茨海默病衰老之间的脑微血管结构和功能变化
- 批准号:
10414100 - 财政年份:2020
- 资助金额:
$ 35.03万 - 项目类别:
Long-Term Tracking of Cerebral Microvascular Structural and Functional Alterations between Normal and Alzheimer's Aging
长期跟踪正常衰老和阿尔茨海默病衰老之间的脑微血管结构和功能变化
- 批准号:
10265356 - 财政年份:2020
- 资助金额:
$ 35.03万 - 项目类别:
Long-Term Tracking of Cerebral Microvascular Structural and Functional Alterations between Normal and Alzheimer's Aging
长期跟踪正常衰老和阿尔茨海默病衰老之间的脑微血管结构和功能变化
- 批准号:
10613561 - 财政年份:2020
- 资助金额:
$ 35.03万 - 项目类别:
Microscopic imaging of neuro-capillary coupling in brain cortex
大脑皮层神经毛细血管耦合的显微成像
- 批准号:
9187012 - 财政年份:2015
- 资助金额:
$ 35.03万 - 项目类别:
Microscopic imaging of neuro-capillary coupling in brain cortex
大脑皮层神经毛细血管耦合的显微成像
- 批准号:
9172247 - 财政年份:2015
- 资助金额:
$ 35.03万 - 项目类别:
Microscopic imaging of neuro-capillary coupling in brain cortex
大脑皮层神经毛细血管耦合的显微成像
- 批准号:
8581609 - 财政年份:2013
- 资助金额:
$ 35.03万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 35.03万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 35.03万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 35.03万 - 项目类别:
Cryobioprinting for Shelf-Ready Tissue Fabrication and Storage
用于货架组织制造和储存的冷冻生物打印
- 批准号:
10927669 - 财政年份:2023
- 资助金额:
$ 35.03万 - 项目类别: