Functional Mapping of Enhancer Conservation Between Species to Enable Mechanistic Insights into Polygenic Disease
物种间增强子保护的功能图谱,以实现对多基因疾病的机制洞察
基本信息
- 批准号:10294279
- 负责人:
- 金额:$ 51.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AllelesAnimal ModelAutomobile DrivingBindingBiological AssayCRISPR screenCellsComplexDeoxyribonucleasesDevelopmentDiseaseElementsEncyclopedia of DNA ElementsEnhancersEpithelialEtiologyFunctional disorderGene ExpressionGenesGenetic TranscriptionGenetic VariationGenomeGoalsHealthHeritabilityHumanHuman GenomeHypersensitivityIndividualLocationMapsMeasurementMeasuresMethodsMolecularMusMutagenesisNeuronsPhenotypePhysiologicalPopulationRegulatory ElementReporterScreening ResultSequence HomologySulfurUntranslated RNAVariantWritingbasecausal variantchromatin modificationcomparativedirect applicationdisorder riskgenome wide association studygenome-widehuman diseasehuman modelhuman pluripotent stem cellimprovedinduced pluripotent stem cellinsightmolecular phenotypesuccesstrait
项目摘要
PROJECT SUMMARY
Recent advances to characterize cis-regulatory elements (CRE), including massively parallel reporter assays
and CRISPR-based screens of non-coding elements, have transformed our ability to comprehensively
characterize the non-coding genome at scale. Large scale efforts by us and others through the Encyclopedia of
DNA Elements (ENCODE) consortium are now underway to apply these methods genome-wide across many
cellular states. The results of these screens will have a transformative impact on our ability to read and write
the regulatory grammar of the cell. One direct application will be in the interpretation of causal alleles for
human disease risk and other phenotypic traits identified through genome-wide association studies. From
these studies we now know the majority of heritability for complex traits resides in non-coding regions of the
genome. Until recently it has been difficult to pinpoint individual causal alleles but progress is now being made
to identify and elucidate their molecular function. Despite our burgeoning success in understanding how a
variant impacts molecular phenotypes (e.g. gene transcription), we lack the ability to systematically evaluate
allele(s) within model organisms to understand their impact on physiological function. This disconnect is
partially due to our inability to identify the homologous non-coding region to target within model organisms. To
aid in modeling human regulatory variation in the mouse, in this project we will develop improved maps of
homologous CREs between human and mouse. Current comparative approaches rely on sequence homology
and correlative measures of gene expression such as regions of DNase hypersensitivity and chromatin
modifications. While these methods have provided valuable insight, they lack direct quantitative measurements
of a CRE's impact on individual genes and the location of the cis-regulatory modules (CRMs) within the CREs
responsible for activity. To overcome these shortcomings, in this study we will develop maps of CRE
conservation based directly on function. To accomplish this, we will differentiate induced pluripotent stem cells
(iPSCs) from human and mouse to early developmental states as the starting material for screens of CRE
activity. We will use (i) a CRISPR-based screen to endogenously perturb putative CREs important for neuronal
and epithelial function; and (ii) CREs with concordant and discordant activity across the two species will then
undergo saturation mutagenesis using a massively parallel reporter assay (MPRA). Results from the MPRA
will identify CRMs (e.g. TF binding motifs) within each CRE driving regulatory activity of the element. We will
use the results from both screens to construct improved maps of CRE conservation that will inform how to copy
the effects of genetic variation residing at these regions across species. Doing so will accelerate our progress
in moving human disease variants into animal models, thereby allowing us to better understand the
pathophysiology of complex diseases in the human population.
项目概要
表征顺式调控元件 (CRE) 的最新进展,包括大规模并行报告基因检测
和基于 CRISPR 的非编码元件筛选,改变了我们综合分析的能力
大规模表征非编码基因组。我们和其他人通过百科全书进行的大规模努力
DNA Elements (ENCODE) 联盟目前正在将这些方法应用于许多基因组范围内
细胞状态。这些屏幕的结果将对我们的阅读和写作能力产生革命性的影响
细胞的调节语法。一个直接的应用是解释因果等位基因
通过全基因组关联研究确定的人类疾病风险和其他表型特征。从
通过这些研究,我们现在知道复杂性状的大部分遗传力存在于非编码区域
基因组。直到最近,还很难确定单个因果等位基因,但现在正在取得进展
识别和阐明它们的分子功能。尽管我们在理解如何
变异影响分子表型(例如基因转录),我们缺乏系统评估的能力
模型生物体内的等位基因,以了解它们对生理功能的影响。这种断开连接是
部分原因是我们无法识别模型生物体内的同源非编码区域。到
帮助模拟小鼠的人类调节变化,在这个项目中,我们将开发改进的图谱
人类和小鼠之间的同源 CRE。当前的比较方法依赖于序列同源性
以及基因表达的相关测量,例如 DNase 超敏区域和染色质
修改。虽然这些方法提供了有价值的见解,但它们缺乏直接的定量测量
CRE 对个体基因的影响以及 CRE 中顺式调控模块 (CRM) 的位置
负责活动。为了克服这些缺点,在本研究中我们将开发 CRE 地图
直接基于函数的守恒。为了实现这一目标,我们将分化诱导多能干细胞
(iPSC)从人类和小鼠到早期发育状态,作为 CRE 筛选的起始材料
活动。我们将使用 (i) 基于 CRISPR 的筛选来内源性扰乱对神经元重要的推定 CRE
和上皮功能; (ii) 两个物种之间活动一致和不一致的 CRE 将
使用大规模并行报告分析(MPRA)进行饱和诱变。 MPRA 的结果
将识别每个 CRE 中驱动元件监管活动的 CRM(例如 TF 结合基序)。我们将
使用两个屏幕的结果构建改进的 CRE 保护地图,以告知如何复制
这些区域的遗传变异对物种的影响。这样做会加速我们的进步
将人类疾病变异转移到动物模型中,从而使我们能够更好地了解
人类复杂疾病的病理生理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Tewhey其他文献
Ryan Tewhey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Tewhey', 18)}}的其他基金
Functional Mapping of Enhancer Conservation Between Species to Enable Mechanistic Insights into Polygenic Disease
物种间增强子保护的功能图谱,以实现对多基因疾病的机制洞察
- 批准号:
10669233 - 财政年份:2021
- 资助金额:
$ 51.92万 - 项目类别:
Functional Mapping of Enhancer Conservation Between Species to Enable Mechanistic Insights into Polygenic Disease
物种间增强子保护的功能图谱,以实现对多基因疾病的机制洞察
- 批准号:
10491357 - 财政年份:2021
- 资助金额:
$ 51.92万 - 项目类别:
Massively Parallel Phenotypic Characterization of Non-coding Genetic Variation
非编码遗传变异的大规模平行表型表征
- 批准号:
8976275 - 财政年份:2014
- 资助金额:
$ 51.92万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
脆性X综合征动物模型中异常视觉信息处理和视觉注意力的神经环路机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Investigating the Role of Heterotrimeric G Proteins in Craniofacial Development and Auriculocondylar Syndrome
研究异三聚体 G 蛋白在颅面发育和耳髁综合征中的作用
- 批准号:
10573017 - 财政年份:2023
- 资助金额:
$ 51.92万 - 项目类别:
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 51.92万 - 项目类别:
A systematic approach to uncover the basic mechanisms of checkpoint inhibitor immune related adverse events
揭示检查点抑制剂免疫相关不良事件基本机制的系统方法
- 批准号:
10637272 - 财政年份:2023
- 资助金额:
$ 51.92万 - 项目类别:
Examining adult hippocampal neurogenesis and cognitive function in Rett syndrome
检查雷特综合征成人海马神经发生和认知功能
- 批准号:
10425703 - 财政年份:2022
- 资助金额:
$ 51.92万 - 项目类别: