Nickel-Catalyzed Alkyne Hydroamination for Efficient Amine Synthesis
镍催化炔氢胺化用于高效胺合成
基本信息
- 批准号:10292302
- 负责人:
- 金额:$ 41.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAlkenesAlkynesAmidesAminesAminopyridinesBiologicalBiomedical ResearchCharacteristicsChemicalsComplexComputing MethodologiesDataDevelopmentEvaluationFaceGoalsHydrogen BondingIminesInvestigationKineticsLanthanoid Series ElementsLeadLigandsMediatingMedicalMetalsMethodsNatural Product DrugNickelNitrogenOrganometallic ChemistryPathway interactionsPlanet EarthProcessPublishingReactionReagentReportingResearchRoleScienceStructureSystemTemperatureTestingTransition ElementsWorkbasecarbenecatalystcostdesigndrug developmentdrug synthesisfeasibility researchfunctional groupinnovationmethod developmentnovelpi bondpractical applicationresearch and developmentsmall molecule
项目摘要
PROJECT SUMMARY
Amines are ubiquitous subunits of biologically active compounds. Transition metal-catalyzed
hydroamination enables atom-efficient synthesis of amines using readily available chemical
feedstocks. Many classes of metal catalysts and ligands have been developed to facilitate
hydroamination of alkynes, generating enamine and imine products that are valuable building
blocks for nitrogen-containing molecules. In spite of these advances, catalytic alkyne
hydroamination faces several major challenges including the high costs of catalysts that are largely
based on precious metals, the common requirement of high reaction temperatures, as well as the
long-standing hurdle of regiochemistry control. Overcoming these challenges would widen practical
applications of catalytic alkyne hydroamination in biomedical research and drug synthesis.
The long-term goal of our proposed research is to develop earth-abundant transition metal-
based catalysts to promote selective and efficient synthesis of amines and other nitrogen-
containing compounds. The overall objective of this research is to advance the reaction scope and
catalyst efficiency for nickel-catalyzed alkyne hydroamination processes. Our research strategy
emphasizes on in-depth reaction mechanism understanding by experimental and computational
methods, which will guide our efforts on hydroamination catalyst optimization and development of
mechanistically relevant aminative tandem transformations. Our proposed studies are based on
the central hypothesis that N-heterocyclic carbene (NHC)-ligated nickel complexes possess unique
reactivity of N-H bond activation and C-N bond formation at low energy barriers, which unlocks a
broad scope of alkyne hydroamination and relevant catalytic processes under mild and neutral
conditions. Feasibility of this research is demonstrated by our published and unpublished results
on Ni/NHC-catalyzed alkyne hydroamination with various N-H nucleophiles including biomedically
important heteroaryl-amines, as well as reactivity evaluation of structurally characterized novel Ni-
NHC complexes with amide-type ligands.
Guided by strong preliminary data, we propose to pursue the following two Specific Aims:
(1) To advance the scope and functional group compatibility of Ni/NHC-catalyzed alkyne
hydroamination. (2) To define the mechanism of Ni/NHC-catalyzed alkyne hydroamination.
Our proposed research is innovative because it aims to exploit unique bond-transformation
reactivity of Ni/NHC complexes for alkyne hydroamination. Results from these proposed studies
are significant because they will provide new and efficient catalytic methods for transformations of
simple building blocks to synthesize nitrogen-containing small molecules of biomedical relevance.
项目概要
胺是生物活性化合物中普遍存在的亚基。过渡金属催化
加氢胺化能够使用现成的化学物质以原子效率合成胺
原料。已经开发了许多类别的金属催化剂和配体以促进
炔烃的加氢胺化,生成有价值的建筑用烯胺和亚胺产品
含氮分子的块。尽管取得了这些进展,催化炔烃
加氢胺化面临着几个重大挑战,包括催化剂的高成本
基于贵金属,高反应温度的共同要求,以及
区域化学控制的长期障碍。克服这些挑战将扩大实际应用范围
催化炔氢氨化在生物医学研究和药物合成中的应用。
我们提出的研究的长期目标是开发地球上丰富的过渡金属-
基于催化剂促进胺和其他氮的选择性和高效合成
含有化合物。本研究的总体目标是提高反应范围和
镍催化炔氢胺化过程的催化剂效率。我们的研究策略
强调通过实验和计算深入理解反应机理
方法,这将指导我们在加氢胺化催化剂的优化和开发方面的努力
机械相关的主动串联转变。我们提出的研究基于
中心假设是N-杂环卡宾(NHC)连接的镍配合物具有独特的
在低能垒下 N-H 键活化和 C-N 键形成的反应性,这解锁了
温和和中性条件下的广泛的炔氢胺化和相关催化过程
状况。我们已发表和未发表的结果证明了这项研究的可行性
Ni/NHC 催化的炔氢胺化与各种 N-H 亲核试剂(包括生物医学)
重要的杂芳基胺,以及结构特征新颖的 Ni- 的反应性评估
NHC 与酰胺型配体形成复合物。
在强有力的初步数据的指导下,我们建议实现以下两个具体目标:
(1) 提高Ni/NHC催化炔烃的适用范围和官能团相容性
加氢氨化。 (2)明确Ni/NHC催化的炔氢胺化反应机理。
我们提出的研究具有创新性,因为它旨在利用独特的键转化
Ni/NHC 配合物对炔氢胺化的反应活性。这些拟议研究的结果
意义重大,因为它们将为转化提供新的、有效的催化方法
用于合成具有生物医学相关性的含氮小分子的简单构建模块。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinjing Zhao其他文献
Pinjing Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
低价钴-氢催化烯烃/炔烃氢烷基化
- 批准号:22371273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
镍催化炔烃三组分偶联反应构建官能化四碳取代烯烃的研究
- 批准号:21901163
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
硼催化的烯烃、炔烃氢芳基化反应的理论与实验研究
- 批准号:21903043
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于电化学氧化/碘催化策略下炔烃(烯烃)双官能团化构建Csp2/sp3-Z(O、S、Se、Te、N)键研究
- 批准号:21902014
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于Atrane结构锗硼试剂的烯烃和炔烃官能化
- 批准号:21871239
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Asymmetric Gold Redox Catalysis for Challenging Chemical Transformations
开发不对称金氧化还原催化来应对具有挑战性的化学转化
- 批准号:
10686074 - 财政年份:2022
- 资助金额:
$ 41.48万 - 项目类别:
Visible Light-Enabled Synthesis of Heterocycles through Energy Transfer
通过能量转移可见光合成杂环
- 批准号:
10369700 - 财政年份:2021
- 资助金额:
$ 41.48万 - 项目类别:
Visible Light-Enabled Synthesis of Heterocycles through Energy Transfer
通过能量转移可见光合成杂环
- 批准号:
10636772 - 财政年份:2021
- 资助金额:
$ 41.48万 - 项目类别:
Nannocystin Reagents to Elucidate the Role of Elongation Factor 1a in Apoptosis
Nannocystin 试剂阐明延伸因子 1a 在细胞凋亡中的作用
- 批准号:
10348198 - 财政年份:2021
- 资助金额:
$ 41.48万 - 项目类别:
Visible Light-Enabled Synthesis of Heterocycles through Energy Transfer
通过能量转移可见光合成杂环
- 批准号:
10185529 - 财政年份:2021
- 资助金额:
$ 41.48万 - 项目类别: