Defining the molecular and cellular bases of tissue compartmentalization
定义组织区室化的分子和细胞基础
基本信息
- 批准号:10292120
- 负责人:
- 金额:$ 43.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAdhesionsAffectAnimalsArchitectureBindingBiochemicalBiotinBrain regionCRISPR/Cas technologyCell Surface ProteinsCell membraneCellsCellular MorphologyComplexCongenital AbnormalityCuesCytoskeletal ProteinsData SetDevelopmentDiseaseDrosophila genusEmbryoEpithelialEventExcisionExtracellular DomainFamilyGenesGeneticGenetic EngineeringGenetic TechniquesGenome engineeringGrowthImaging DeviceImmunoprecipitationInsectaIntegral Membrane ProteinInvertebratesKnowledgeLeadLengthLightLimb BudLinkLocationMass Spectrum AnalysisMediatingMembraneMessenger RNAMicroscopyMolecularMorphologyMutationNatureNeoplasm MetastasisNeuroectodermNosePatternProcessPropertyProteinsRNA InterferenceReportingResearch PersonnelRoleShapesSignal TransductionSomitesSpatial DistributionSpecimenStructureStudy modelsSyndromeSystemTechniquesTestingTissuesTransgenesVertebratesVisualizationWorkbasecell behaviorcell motilityconvergent extensionexperimental studyextracellulargenetic manipulationhigh resolution imagingimaging approachin vivoinsightintercalationknock-downleucine-rich repeat proteinmultiple myeloma M Proteinnanobodiesnanoscaleoverexpressionphysical propertyrecruitresponsetool
项目摘要
Project Summary
A conserved mechanism for keeping complex tissues organized during growth and remodeling is to separate
groups of cells using compartment boundaries, which are multicellular actin-rich structures formed between
adjacent cells. Compartment boundaries are typified by aligned “cables” of highly stable cell-cell interfaces, and
they were first described in insect embryos nearly 40 years ago. Since then, similar boundary structures have
been identified in vertebrates between different regions of the brain, gut, limb buds, and somites. While studies
indicate that the loss of boundary integrity contributes to birth defects such as cranio-fronto-nasal syndrome and
cancer metastasis, efforts to characterize the molecular underpinnings of these structures have been stymied
by a lack of genetic tools for specifically targeting boundary cells. It was recently reported that two cell-surface
proteins––the leucine-rich repeat protein Tartan and the teneurin Ten-m––are the direct spatial cues that initiate
boundary formation in the Drosophila neuroectoderm. The identification of these upstream triggers finally makes
it possible to answer long-standing questions concerning the nature and function of compartment boundaries. In
this proposal, we will use a variety of genetic techniques to alter the expression patterns of Tartan and Ten-m in
the neuroectoderm to address three significant knowledge gaps in the field. First, to identify the changes in
membrane tension and adhesion that lead to boundary formation, we will use genetic engineering techniques to
disrupt compartment boundaries and visualize cytoskeletal and junctional markers in live embryos. We will also
use gene-swapping techniques to alter the location of boundaries to determine how their presence affects overall
tissue architecture. Second, to determine how Tartan and Ten-m interact at a molecular level to trigger boundary
formation, we will perform in vivo structure-function analyses to determine how Tartan controls the localization
of Ten-m and which Ten-m extracellular domains are necessary for boundary formation. Third, to characterize
the effector proteins downstream of Ten-m that give cell-cell interfaces at boundaries their unique physical
properties, we will perform complementary biochemical and high-resolution imaging analyses. To identify
putative Ten-m interaction partners, we will compare immunoprecipitation/mass-spectrometry analyses between
embryos that have been enriched or depleted for compartment boundary cells. To directly visualize the
nanoscale structure of compartment boundaries, we will use expansion microscopy to physically enlarge
Drosophila embryos and analyze the distribution of cytoskeletal and junctional proteins that mediate cell
morphology. Successful completion of this work will greatly enhance our knowledge of how compartment
boundaries are formed and function. Our findings will also serve as a paradigm for understanding how these two
widely expressed and developmentally important families––leucine-rich repeat proteins and teneurins––might
interact in other developmental contexts.
项目概要
在生长和重塑过程中保持复杂组织有序的保守机制是分离
使用隔室边界的细胞群,隔室边界是在细胞之间形成的富含肌动蛋白的结构
相邻细胞的边界以高度稳定的细胞-细胞界面的对齐“电缆”为代表,并且
大约 40 年前,它们首次在昆虫胚胎中被描述,此后,类似的边界结构出现了。
研究中已在脊椎动物的大脑、肠道、肢芽和体节的不同区域中发现了这种现象。
表明边界完整性的丧失会导致出生缺陷,例如颅额鼻综合征和
由于癌症转移,表征这些结构的分子基础的努力受到阻碍
最近有报道称,由于缺乏专门针对边界细胞的遗传工具,有两种细胞表面。
蛋白质——富含亮氨酸的重复蛋白 Tartan 和 tenurin Ten-m——是启动的直接空间线索
果蝇神经外胚层中边界的形成最终使得这些上游触发器的识别成为可能。
有可能回答有关隔间边界的性质和功能的长期存在的问题。
在这个提案中,我们将使用多种遗传技术来改变Tartan和Ten-m的表达模式
神经外胚层解决该领域的三个重大知识空白首先,确定神经外胚层的变化。
导致边界形成的膜张力和粘附力,我们将利用基因工程技术来
我们还将破坏活胚胎中的隔室边界并可视化细胞骨架和连接标记。
使用基因交换技术来改变边界的位置,以确定它们的存在如何影响整体
其次,确定 Tartan 和 Ten-m 如何在分子水平上相互作用以触发边界。
形成后,我们将进行体内结构功能分析,以确定 Tartan 如何控制定位
十米以及哪些十米细胞外结构域对于边界形成是必需的第三,表征。
Ten-m 下游的效应蛋白赋予边界处的细胞-细胞界面独特的物理特性
性质,我们将进行补充生化和高分辨率成像分析。
假定的十米相互作用伙伴,我们将比较免疫沉淀/质谱分析
已富集或耗尽隔室边界细胞的胚胎直接可视化。
隔室边界的纳米级结构,我们将使用膨胀显微镜进行物理放大
果蝇胚胎并分析介导细胞的细胞骨架和连接蛋白的分布
这项工作的成功完成将极大地增强我们对隔室结构的了解。
我们的研究结果也将作为理解这两者如何形成和发挥作用的范例。
广泛表达且对发育重要的家族——富含亮氨酸的重复蛋白和 tenurins——可能
在其他发展环境中相互作用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Methods for Characterizing Cell Morphology and Protein Localization During Development and Regeneration.
发育和再生过程中表征细胞形态和蛋白质定位的方法。
- DOI:
- 发表时间:2023-06-09
- 期刊:
- 影响因子:0
- 作者:Paré; Adam C
- 通讯作者:Adam C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Christopher Pare其他文献
Adam Christopher Pare的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Christopher Pare', 18)}}的其他基金
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10737093 - 财政年份:2023
- 资助金额:
$ 43.71万 - 项目类别:
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10574572 - 财政年份:2021
- 资助金额:
$ 43.71万 - 项目类别:
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10090750 - 财政年份:2021
- 资助金额:
$ 43.71万 - 项目类别:
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10090750 - 财政年份:2021
- 资助金额:
$ 43.71万 - 项目类别:
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10357749 - 财政年份:2021
- 资助金额:
$ 43.71万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 43.71万 - 项目类别:
Understanding A Molecular Cascade That Drives Neutrophil Mediated Pathology In Arthritis
了解驱动中性粒细胞介导的关节炎病理学的分子级联
- 批准号:
10658202 - 财政年份:2023
- 资助金额:
$ 43.71万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 43.71万 - 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
- 批准号:
10562825 - 财政年份:2023
- 资助金额:
$ 43.71万 - 项目类别: