Glutamine metabolism in tuberculosis
结核病中的谷氨酰胺代谢
基本信息
- 批准号:10287785
- 负责人:
- 金额:$ 21.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-06 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlveolar MacrophagesAnimalsAntibioticsAntigen-Presenting CellsArginineBioenergeticsBiological AssayBone MarrowCarbonCause of DeathCell physiologyCellsCellular Metabolic ProcessCessation of lifeCitric Acid CycleCommunicable DiseasesCoupledDendritic CellsDevelopmentDiseaseDrug resistanceDrug resistance in tuberculosisEnzyme-Linked Immunosorbent AssayEpidemicFailureFishesFlow CytometryGene ExpressionGlutamate Metabolism PathwayGlutaminaseGlutamineGlycolysisGranulomaGrowthHIVHomeostasisImageImmuneImmune responseImmunityImmunofluorescence ImmunologicInfectionInfection ControlIsotope LabelingIsotopesLaboratoriesLipidsLungMass FragmentographyMediatingMetabolicMetabolic PathwayMetabolismModelingMolecularMulti-Drug ResistanceMusMycobacterium tuberculosisNADPNatural ImmunityNitrogenOutcome StudyOxidation-ReductionOxidative PhosphorylationPathogenesisPathway interactionsPhysiologicalPhysiologyPreventiveProliferatingPropertyRNAReactionRegimenRegulationResearchRoleSourceSupplementationSystemTestingTherapeuticTherapeutic UsesTracerTranslatingTreatment outcomeTuberculosisUp-RegulationWarburg Effectadaptive immunityaerobic glycolysisantimicrobialbaseco-infectiondefense responsedraining lymph nodeexperimental studyhuman pathogenhypoxia inducible factor 1immune functionimprovedin vivoinhibitor/antagonistinnate immune functionmacrophagemetabolomicsmouse modelnovelnovel therapeutic interventionnucleotide metabolismpathogenprogramsresistant strainresponsesingle moleculesmall moleculesmall molecule inhibitorstable isotopetargeted treatmenttranscriptomicstuberculosis immunityuptake
项目摘要
Abstract
Mycobacterium tuberculosis (Mtb) remains the most successful human pathogen, causing 1.5 million deaths in
2018. Accumulating evidence suggests that Mtb’s ability to survive, persist and cause disease is largely due to
its ability to subvert the host immune and antimicrobial response to infection. Recent advances in
immunometabolism studies have shown that a metabolic shift to glycolysis, aka the Warburg effect, is critical for
the activation and effector functions of immune cells to control the infection. However, there are limited studies
on how the change of metabolic state of infected macrophages affects the activation and function of innate and
adaptive immunity in TB. Our laboratory and others have characterized the immunometabolic changes in multiple
model of TB and found that the metabolic remodeling to the HIF-1-mediated Warburg effect is a general response
to Mtb infection. Through detailed analysis of immunometabolic properties of Mtb-infected macrophages using
transcriptomics, metabolomics and therapeutic compound treatment, we discovered novel evidence that M1
polarization at initial stage of macrophage infection is accompanied by increased glutamine uptake and
metabolism. Given the pleiotropic roles of glutamine metabolism, including anaplerotic reactions from the TCA
cycle, redox homeostasis, and synthesis of nucleotides and NADPH, findings from our studies suggest that
glutamine uptake and metabolism constitute an integral component of metabolic remodeling program of M1
macrophages. Based on these observations, we hypothesize that glutamine functions as important carbon and
nitrogen source for immune cells and that its availability and metabolism are essential for the activation and
function of host innate and adaptive immunity against Mtb infection. To test our hypothesis, we propose two
Specific Aims. In Aim 1, we will define the role of glutamine in mediating the metabolism and physiology of M1
macrophages. We will also decipher the metabolic footprints of glutamine as carbon and nitrogen source during
M1 polarization using stable isotope tracing metabolomics with 13C (1-13C and 5-13C) glutamine and 15N (a-N,
and g-N) glutamine. In Aim 2, we will characterize the role of glutamine metabolism in mediating the activation
and functions of innate and adaptive immune cells using therapeutically validated small molecule inhibitor for
glutaminolysis pathway. We will also evaluate whether supplementation of glutamine to Mtb-infected animals
can serve as a viable strategy of adjunct host directed therapies (HDTs) to boost antimicrobial response of host
immune cells against Mtb infection in a mouse model of TB. By elucidating the effects of glutamine metabolism
on the functional property of host immune cells, this study will establish a novel immunometabolic aspect of TB
research. Outcomes of this study will open new avenues for the development of new adjunct HDTs by targeting
glutamine metabolism to treat TB worldwide.
抽象的
结核分枝杆菌 (Mtb) 仍然是最成功的人类病原体,导致 150 万人死亡
2018. 越来越多的证据表明,结核分枝杆菌的生存、持续和致病能力很大程度上归因于
其破坏宿主免疫和对感染的抗菌反应的能力。
免疫代谢研究表明,代谢转变为糖酵解,又名瓦尔堡效应,对于
然而,免疫细胞的激活和效应功能以控制感染的研究有限。
研究受感染巨噬细胞代谢状态的变化如何影响先天和巨噬细胞的激活和功能
我们的实验室和其他实验室已经表征了多种结核病的免疫代谢变化。
TB 模型,发现 HIF-1 介导的 Warburg 效应的代谢重塑是一种普遍反应
通过使用 Mtb 感染的巨噬细胞的免疫代谢特性进行详细分析。
转录组学、代谢组学和治疗性复合治疗,我们发现了 M1 的新证据
巨噬细胞感染初期的极化伴随着谷氨酰胺摄取的增加和
鉴于谷氨酰胺代谢的多效性作用,包括 TCA 的回补反应。
循环、氧化还原稳态以及核苷酸和 NADPH 的合成,我们的研究结果表明
谷氨酰胺的摄取和代谢构成了 M1 代谢重塑程序的一个组成部分
基于这些观察,我们发现谷氨酰胺的功能与碳一样重要。
免疫细胞的氮源及其可用性和代谢对于激活和免疫细胞至关重要
宿主对 Mtb 感染的先天免疫和适应性免疫的功能 为了检验我们的假设,我们两个提出。
具体目标 在目标 1 中,我们将定义谷氨酰胺在介导 M1 代谢和生理学中的作用。
我们还将破译谷氨酰胺作为碳源和氮源的代谢足迹。
使用 13C(1-13C 和 5-13C)谷氨酰胺和 15N(a-N,
在目标 2 中,我们将描述谷氨酰胺代谢在介导激活中的作用。
和先天性和适应性免疫细胞的功能,使用经过治疗验证的小分子抑制剂
我们还将评估是否向 Mtb 感染的动物补充谷氨酰胺。
可作为辅助宿主定向治疗 (HDT) 的可行策略,以增强宿主的抗菌反应
通过阐明谷氨酰胺代谢的影响,免疫细胞在结核病小鼠模型中抵抗结核分枝杆菌感染。
基于宿主免疫细胞的功能特性,这项研究将建立结核病的新免疫代谢方面
这项研究的结果将为开发新的辅助 HDT 开辟新的途径。
谷氨酰胺代谢在全球范围内治疗结核病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lanbo Shi其他文献
Lanbo Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lanbo Shi', 18)}}的其他基金
The Warburg effect and host immune response in tuberculosis
结核病中的瓦尔堡效应和宿主免疫反应
- 批准号:
10161711 - 财政年份:2017
- 资助金额:
$ 21.27万 - 项目类别:
Dissection of Mycobacterium tuberculosis metabolic and regulatory pathways to per
结核分枝杆菌代谢和调节途径的剖析
- 批准号:
7860291 - 财政年份:2009
- 资助金额:
$ 21.27万 - 项目类别:
Dissection of Mycobacterium tuberculosis metabolic and regulatory pathways to per
结核分枝杆菌代谢和调节途径的剖析
- 批准号:
7707900 - 财政年份:2009
- 资助金额:
$ 21.27万 - 项目类别:
相似国自然基金
Galectin-1抑制肺泡巨噬细胞线粒体损伤介导的NLRP3活化减轻流感致急性肺损伤的机制研究
- 批准号:82300005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HD5-myr靶向冠状病毒N蛋白CTD结构域调控肺泡原驻巨噬细胞功能重塑在肺损伤中的保护作用及机制研究
- 批准号:82372184
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“糖原合成-UDPG/P2Y14/STAT1-肺泡巨噬细胞M1型极化”途径探讨热炎宁合剂治疗急性肺损伤的作用机制
- 批准号:82374418
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
肺泡巨噬细胞嘌呤代谢紊乱介导重症肺炎发病的作用机制研究
- 批准号:82370010
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
靶向HMGB1的WGA-siRNA纳米生物材料抑制肺泡巨噬细胞焦亡在烧伤脓毒症急性肺损伤的作用和分子机制
- 批准号:82372517
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 21.27万 - 项目类别:
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 21.27万 - 项目类别:
Mechanism of cryptococcal fitness, innate defense subversion, and the adaptive immune skewing in lungs
隐球菌适应性机制、先天防御颠覆和肺部适应性免疫偏差
- 批准号:
10696521 - 财政年份:2023
- 资助金额:
$ 21.27万 - 项目类别:
Mechanism of cryptococcal fitness, innate defense subversion, and the adaptive immune skewing in lungs
隐球菌适应性机制、先天防御颠覆和肺部适应性免疫偏差
- 批准号:
10696521 - 财政年份:2023
- 资助金额:
$ 21.27万 - 项目类别:
The Role of Eicosanoid-PPAR axis in Exacerbating Post-Influenza Staphylococcus aureus Super-infection
类花生酸-PPAR 轴在加剧流感后金黄色葡萄球菌双重感染中的作用
- 批准号:
10421113 - 财政年份:2022
- 资助金额:
$ 21.27万 - 项目类别: