An Activity-Based Biomolecule Labeling Platform for the Imaging of Cells and Tissues Under Oxidative Stress
基于活性的生物分子标记平台,用于氧化应激下细胞和组织的成像
基本信息
- 批准号:10283664
- 负责人:
- 金额:$ 9.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseBiologicalBiological ModelsCardiovascular DiseasesCell CommunicationCell DeathCell LineCell physiologyCellsChemicalsCoculture TechniquesCollaborationsComplexCoupledDataDetectionDiffuseDiffusionDiseaseEthersExposure toFamilyFluorescence MicroscopyFluorescent ProbesFoundationsGoalsHomeostasisHydrogen PeroxideHypochlorous AcidImageIn VitroLabelMalignant NeoplasmsMapsMeasurementMediatingMetabolicMicrogliaModelingMolecular ProbesMonitorNatureNerve DegenerationNeurodegenerative DisordersNeuronsNoiseOrganismOxidation-ReductionOxidative StressPathologyPhasePhenolsPlayPolymer ChemistryPolymersProductionPropertyProteinsReactionReactive Oxygen SpeciesResearchRoleSamplingSignal TransductionSignaling MoleculeSourceStressStructureSuperoxidesSurfaceSystemTestingTissuesTrainingVisualizationbasebiological systemscellular imagingcellular targetingdesignexperiencefluorescence imagingfluorophoreimaging platformoxidative damagepolymerizationprogramsquinone methideresponsesmall moleculetool
项目摘要
Project Summary
Reactive oxygen species (ROS) are a family of small-molecules in living systems that serve vital
roles in both signaling and stress. Hydrogen peroxide (H2O2), superoxide (O2•-), and hypochlorous
acid (HOCl), among others, are all examples of ROS that have been traditionally viewed as
sources of oxidative stress and damage. Aberrant ROS production contributes to a multitude of
pathologies such as neurodegeneration, cancer, and cardiovascular disorders. However, ROS
are also critical for maintaining metabolic homeostasis through activation of multiple classes of
proteins. This signal-stress dichotomy, coupled with the small and transient nature of ROS,
presents a challenge when attempting to decode the complex landscape of cellular redox
homeostasis. Fluorescent probes are frequently employed to visualize ROS in living systems
through fluorescence microscopy, however these probes are prone to diffusion after ROS
detection. This leads to inaccurate determination of ROS localization and poor signal-to-noise
responses. As such, there is a need to create probes amenable to the permanent recording of
ROS via fluorescence imaging. We hypothesize that activity-based cell-trappable fluorescent
probes can be used as a platform to gain further understanding of ROS-mediated inter- and intra-
cellular signaling. We propose three specific aims to test this hypothesis. First, we will synthesize
fluorophores caged with activity-based triggers and proximal fluoromethyl groups to serve as
latent equivalents of quinone methide upon ROS sensing. ROS responsive uncaging will allow
for the fluorescent labeling of adjacent biomolecules. Second, we will apply our probes across
multiple model live cell lines to monitor ROS fluxes. We will also map cell-to-cell communication
mediated by ROS using microglia-neuron co-culture as a biological model. This system will allow
us to probe transcellular redox signaling as microglia can be selectively activated in the presence
of neurons thereby dispatching H2O2 to nearby neurons. The third aim involves developing a
fluorescent polymer amplification strategy to increase signal-to-noise responses of tandem
activity-based sensing/labeling probes and will primarily be carried out in the R00 phase. Small-
molecule polymer initiators will be caged in a similar manner to the previously described
fluorescent probes. After ROS sensing and biomolecule labeling, polymerization will be performed
to generate fluorescent polymers from biomolecule surfaces thus enabling signal amplification
and visualization. This strategy will be carried over into live cell lines described above. This
research fits into the applicant’s goal of establishing a program which uses polymer chemistry to
probe fundamental questions in biological systems.
项目概要
活性氧 (ROS) 是生命系统中的一类小分子,为生命活动提供服务
过氧化氢 (H2O2)、超氧化物 (O2•-) 和次氯酸。
酸 (HOCl) 等都是 ROS 的例子,传统上被视为
异常的 ROS 产生会导致多种氧化应激和损伤。
然而,ROS 可能会导致神经退行性疾病、癌症和心血管疾病等疾病。
通过激活多类物质来维持代谢稳态也至关重要
这种信号-应激二分法,加上 ROS 的小且短暂的性质,
在尝试解码细胞氧化还原的复杂景观时提出了挑战
荧光探针经常用于观察生命系统中的 ROS。
通过荧光显微镜,然而这些探针在 ROS 后很容易扩散
这会导致 ROS 定位测定不准确和信噪比差。
因此,需要创建能够永久记录响应的探测器。
我们通过荧光成像来对抗基于活性的细胞捕获荧光。
探针可用作进一步了解 ROS 介导的细胞间和细胞内的平台。
我们提出了三个具体目标来检验这一假设。
荧光团与基于活动的触发器和近端氟甲基基团关在一起,作为
ROS 感应的醌方法的潜在等效物将允许 ROS 响应解笼锁。
其次,我们将探针应用于邻近的生物分子。
我们还将绘制多个模型活细胞系来监测 ROS 通量。
该系统使用小胶质细胞-神经元共培养作为生物模型,由 ROS 介导。
我们探测跨细胞氧化还原信号传导,因为小胶质细胞可以在存在的情况下选择性激活
第三个目标是开发一种神经元。
荧光聚合物放大策略以增加串联信号的信噪比
基于活动的传感/标记探针,将主要在 R00 阶段进行。
分子聚合物引发剂将以与前面描述的类似的方式被笼住
荧光探针检测和生物分子标记后,将进行聚合。
从生物分子表面产生荧光聚合物,从而实现信号放大
该策略将被应用到上述活细胞系中。
研究符合申请人的目标,即建立一个利用高分子化学来
探索生物系统中的基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Messina其他文献
Marco Messina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Messina', 18)}}的其他基金
An Activity-Based Biomolecule Labeling Platform for the Imaging of Cells and Tissues Under Oxidative Stress
基于活性的生物分子标记平台,用于氧化应激下细胞和组织的成像
- 批准号:
10468191 - 财政年份:2021
- 资助金额:
$ 9.15万 - 项目类别:
An Activity-Based Biomolecule Labeling Platform for the Imaging of Cells and Tissues Under Oxidative Stress
基于活性的生物分子标记平台,用于氧化应激下细胞和组织的成像
- 批准号:
10878056 - 财政年份:2021
- 资助金额:
$ 9.15万 - 项目类别:
相似国自然基金
面向重大疾病肝癌群体基因组的生物信息分析方法研究
- 批准号:62331016
- 批准年份:2023
- 资助金额:233 万元
- 项目类别:重点项目
多网络视角学习增强的微生物和疾病复杂联系预测
- 批准号:62372282
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自身免疫性疾病精准诊疗中基于非编码RNA组学和生物信息学的新方法研究
- 批准号:82371855
- 批准年份:2023
- 资助金额:74 万元
- 项目类别:面上项目
AI辅助的脑靶向甘草次酸衍生物制备及其防治衰老疾病的作用机制
- 批准号:22338004
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
用于重大慢性炎症疾病治疗的活性生物材料
- 批准号:52333004
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
Project 2: Biomarker Analysis, Non-Genetic Risk Factors, and Their Genetic Interactions
项目 2:生物标志物分析、非遗传风险因素及其遗传相互作用
- 批准号:
10555697 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别: