Smart patch of podocytes
足细胞智能斑块
基本信息
- 批准号:10284970
- 负责人:
- 金额:$ 18.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AnimalsApoptosisAreaAstrocytesBehaviorCD2-associated proteinCalciumCalcium ChannelCalcium SignalingCellsCharacteristicsChronic Kidney FailureCommunicationComplexDevelopmentDiabetic NephropathyDiseaseElectrophysiology (science)ElementsEndothelial CellsEpithelial CellsFocal Segmental GlomerulosclerosisFoot ProcessFunctional disorderFunding OpportunitiesGatekeepingGeneticGenetic TranscriptionGoalsHematological DiseaseHumanImaging TechniquesInjuryInterventionIon ChannelKidneyKidney DiseasesKnowledgeLeftLesionLinkMaintenanceMapsMeasurementMeasuresMediatingMethodsMolecularMutationNPHS2 proteinNephrotic SyndromeNeuronsOutcomePathogenesisPathologicPathologyPathway interactionsPermeabilityPhysiologicalPhysiologyPlayProcessPropertyProtocols documentationRecording of previous eventsRegulationRenal functionRenal glomerular diseaseReportingResearchRodentRoleScanningSeriesSignal TransductionStructural ProteinStructureTechniquesTechnologyTestingTherapeuticUrologic Diseasesalpha Actinincell motilitycell transformationglomerular basement membraneglomerular endotheliumglomerular filtrationinnovationinsightnephrinnovelnovel strategiespatch clamppodocyteprognosticprotein complexreceptorscanning ion conductance microscopyslit diaphragmtool
项目摘要
Project Summary
The glomerular filtration barrier (GFB) is comprised of the fenestrated glomerular endothelium, the glomerular
basement membrane, and the podocyte. Physiologic permeability of the GFB depends on the slit diaphragms
formed by the foot processes of the podocytes. Podocyte damage is a hallmark of glomerular disease, such as
focal segmental glomerulosclerosis, minimal change disease, and more common diabetic kidney disease.
Therefore, the podocyte has become a central focus for novel interventions in many renal diseases due to its
vital role in the regulation of glomerular permeability and maintenance of glomerular structure through
interactions with other glomerular parenchymal cells. Mutations in several podocyte structural proteins such as
nephrin, podocin, alpha-actinin 4, CD2-associated protein, and transient receptor potential canonical channel 6
(TRPC6) were identified and have emerged to provide critical insight into the pathogenesis of glomeruli
injury. The discovery of the calcium channel TRPC6 in podocyte foot processes as part of the slit diaphragm
protein complex suggests that these structural podocyte elements are functional Ca2+ compartments. This
opens the question about the role of intracellular Ca2+ signaling mediated by ion channels influx in foot processes
for mechanisms and pathways in normal and pathological conditions and, thereby, the maintenance of a proper
GFB. However, the activity of any channels in the foot processes of podocytes has never been reported due to
technical challenges. We propose to establish and test a novel approach to study the contributions of ion
channels localized in the foot processes of podocyte of freshly isolated glomeruli toward the GFB control or
development of glomerular injury. We will do this by combining our recently developed tools: 1) vibrodissociation
for fast isolation of rodent and human glomeruli; 2) scanning ion conductance microscopy (SICM) technique; 3)
and smart SICM topography oriented patch-clamp with the ultimate goal to develop a protocol allowing
electrophysiological recordings of ion channels activity in the podocyte foot processes. The potential outcome
will be critically important for the understanding of podocyte physiology and pathophysiology in FSGS, MCD,
and DKD. We have demonstrated our capabilities to apply many cutting-edge techniques to study renal function
at the genetic, molecular, cellular, and whole animal levels. We feel strongly that our technical and topical
expertise will lead to the development of innovative tool allowing to study the podocyte foot processes on
functional level. The Specific Aim of this proposal is to develop a novel approach allowing to measure ion
channel activity in the podocyte foot processes and perform initial characterization of native endogenous
channels in normal and pathological state.
项目概要
肾小球滤过屏障(GFB)由有孔的肾小球内皮、肾小球
基底膜和足细胞。 GFB 的生理渗透性取决于狭缝隔膜
由足细胞的足突形成。足细胞损伤是肾小球疾病的一个标志,例如
局灶节段性肾小球硬化症、微小病变以及更常见的糖尿病肾病。
因此,足细胞因其独特的功能而成为许多肾脏疾病新干预措施的中心焦点。
通过调节肾小球通透性和维持肾小球结构发挥重要作用
与其他肾小球实质细胞的相互作用。几种足细胞结构蛋白的突变,例如
去氧肾上腺素、podocin、α-肌动蛋白 4、CD2 相关蛋白和瞬时受体电位规范通道 6
(TRPC6) 的发现和出现为肾小球的发病机制提供了重要的见解
受伤。足细胞足突中钙通道 TRPC6 的发现,作为裂隙隔膜的一部分
蛋白质复合物表明这些结构性足细胞元件是功能性 Ca2+ 区室。这
提出了足突中离子通道流入介导的细胞内 Ca2+ 信号传导的作用问题
正常和病理条件下的机制和途径,从而维持适当的
GFB。然而,由于足细胞足突中任何通道的活性从未被报道过
技术挑战。我们建议建立并测试一种新方法来研究离子的贡献
位于新鲜分离的肾小球足细胞足突中的通道朝向 GFB 控制或
肾小球损伤的发展。我们将通过结合我们最近开发的工具来做到这一点:1)振动解离
用于快速分离啮齿动物和人类肾小球; 2)扫描离子电导显微镜(SICM)技术; 3)
和智能 SICM 形貌导向膜片钳,最终目标是开发一种协议,允许
足细胞足突中离子通道活动的电生理记录。潜在的结果
对于理解 FSGS、MCD、足细胞生理学和病理生理学至关重要
和 DKD。我们已经展示了应用许多尖端技术来研究肾功能的能力
在遗传、分子、细胞和整个动物水平上。我们强烈地感觉到我们的技术和主题
专业知识将导致创新工具的开发,允许研究足细胞足部过程
功能级别。该提案的具体目标是开发一种新方法,允许测量离子
足细胞足突中的通道活动并执行天然内源性的初步表征
正常和病理状态下的通道。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER STARUSCHENKO其他文献
ALEXANDER STARUSCHENKO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER STARUSCHENKO', 18)}}的其他基金
Renal ion channels in the control of blood pressure
肾离子通道控制血压
- 批准号:
10585921 - 财政年份:2017
- 资助金额:
$ 18.69万 - 项目类别:
Renal ion channels in the control of blood pressure
肾离子通道控制血压
- 批准号:
10559940 - 财政年份:2017
- 资助金额:
$ 18.69万 - 项目类别:
Renal ion channels in the control of blood pressure
肾离子通道控制血压
- 批准号:
9242307 - 财政年份:2017
- 资助金额:
$ 18.69万 - 项目类别:
Mechanisms and relevance of ENaC regulation by EGF and Rac1
EGF 和 Rac1 调节 ENaC 的机制和相关性
- 批准号:
8245462 - 财政年份:2011
- 资助金额:
$ 18.69万 - 项目类别:
Mechanisms and relevance of ENaC regulation by EGF and Rac1
EGF 和 Rac1 调节 ENaC 的机制和相关性
- 批准号:
8584320 - 财政年份:2011
- 资助金额:
$ 18.69万 - 项目类别:
Mechanisms and relevance of ENaC regulation by EGF and Rac1
EGF 和 Rac1 调节 ENaC 的机制和相关性
- 批准号:
8389894 - 财政年份:2011
- 资助金额:
$ 18.69万 - 项目类别:
相似国自然基金
内质网应激通过m6A甲基化调控牛卵巢颗粒细胞坏死性凋亡机制研究
- 批准号:32372887
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤特异性转录本MARCO-TST通过调控AIF核转位抑制细胞凋亡介导HER2阳性乳腺癌治疗耐药的机制研究
- 批准号:82303808
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑微血管内皮细胞来源外泌体YY1靶向MARK4激活Hippo信号通路促进神经元凋亡导致缺血性脑卒中神经损伤的机制研究
- 批准号:82301496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PCN/HA光催化促进凋亡成纤维细胞胞葬清除在祛除颌面增生性瘢痕中的作用及机制研究
- 批准号:82301052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负压诱导下自体外周血单核细胞来源的凋亡囊泡对颞下颌关节骨关节炎的临床治疗研究
- 批准号:82370985
- 批准年份:2023
- 资助金额:70 万元
- 项目类别:面上项目
相似海外基金
Health Effects of the Fluorinated Pollutants; PFAS on Enamel Development
氟化污染物对健康的影响;
- 批准号:
10697298 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Dietary prevention for colorectal cancer: targeting the bile acid/gut microbiome axis
结直肠癌的饮食预防:针对胆汁酸/肠道微生物组轴
- 批准号:
10723195 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Project 3: Credentialing CDK 4/6 inhibitors used with radiation as an effective treatment strategy in locally advanced ER+ and TNBC
项目 3:认证 CDK 4/6 抑制剂与放射结合使用作为局部晚期 ER 和 TNBC 的有效治疗策略
- 批准号:
10554474 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别: