Shedding light on the role of RNA binding protein-mediated RNA regulation in synaptic plasticity
揭示 RNA 结合蛋白介导的 RNA 调节在突触可塑性中的作用
基本信息
- 批准号:10285142
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2022-12-29
- 项目状态:已结题
- 来源:
- 关键词:Affinity ChromatographyAllelesAlternative SplicingAxonBioinformaticsBiological AssayBiologyBrainBreedingCaliberCell NucleusCellsComplexDNADataData SetDendritesDiseaseEnvironmentFMR1Fluorescent in Situ HybridizationFoundationsGene ExpressionGenesGenetic TranscriptionHigh-Throughput Nucleotide SequencingHippocampus (Brain)Immediate-Early GenesImmunoprecipitationKnowledgeLaboratoriesLearningLightLightingMeasuresMediatingMemoryMessenger RNAMethodologyModelingMolecularMusNeurologicNeuronsNeuropilNeurosciencesOpticsPathologicPoly APopulationProcessProtein BiosynthesisProteomeRNARNA BindingRNA metabolismRNA-Binding ProteinsRegulationResearchResolutionRestRoleSiteStructureSynapsesSynaptic plasticityTechnologyTestingTimeTranscriptTranslationsUniversitiesUp-Regulationcalmodulin-dependent protein kinase IIcell typecrosslinkexcitatory neuronexperienceexperimental studygenetic informationin vivoinsightinterestmRNA Precursormouse modelnervous system disorderneuronal cell bodynovelnovel strategiesoptogeneticsprotein distributionrelating to nervous systemresponseunpublished works
项目摘要
Project Summary
Neurons have highly specialized structures and functions; their genetic information is often located a great
distance from the sites where information gets transmitted, and they must dynamically alter the synaptic
proteome in response to neural activity. These challenges indicate that neurons have evolved unique regulatory
mechanisms to meet functional demands. The uniformity of DNA across different cell types suggests that how
genetic information is unfolded and processed underlies cellular diversity. In this view, careful examination of the
regulation of RNA metabolism, how pre-mRNA gene copies are alternatively spliced and polyadenylated, edited,
localized, and translationally regulated, will offer a new avenue towards understanding complex processes, such
as synaptic plasticity underlying learning and memory. This notion has driven molecular neuroscientists to search
for factors that localize and regulate synaptic RNAs. We are only beginning to compile a list of these key
regulators, such as RNA binding proteins (RBPs), particularly in the synapses of hippocampal neurons that are
involved in memory, and to date very little is known about how these factors regulate RNA. Our laboratory has
recently generated a new platform for cell-specific Crosslinked Immunoprecipitation (CLIP) of RBPs in the living
brain of mice (cTag-CLIP), which has furthered our understanding of the cell-specific regulatory functions of
RBPs; however, this technology is limited to looking at steady state RNA regulation. Here we described a novel
approach to uncover the role of neuronal RBP-mediated RNA regulation in the context of synaptic plasticity. This
methodology, termed opto-CLIP, will combine the cell type-specific resolution afforded by cTag-CLIP with the
unprecedented precision of optogenetics to achieve non-invasive optical control of specific neurons. Once
established, we will increase the cellular resolution by performing opto-CLIP in distinct subcellular compartments
to assess local RNA regulation associated with neuronal function. This study will further our understanding of
RBP-mediated RNA regulation, enhance our knowledge of the role of RNA metabolism in synaptic plasticity, and
provide new insight into the pathological mechanisms underlying neurological disorders. In conclusion, I am
confident that my experience studying RNA biology, the Darnell lab's foundation in neuroscience and CLIP, and
the rich research environment at Rockefeller University will help me succeed in using optogenetics to study the
role of RBP-mediated RNA regulation in synaptic plasticity.
项目概要
神经元具有高度专业化的结构和功能;他们的遗传信息往往位于一个伟大的
距信息传输站点的距离,并且它们必须动态地改变突触
对神经活动做出反应的蛋白质组。这些挑战表明神经元已经进化出独特的调节机制
满足功能需求的机制。不同细胞类型的 DNA 的一致性表明
遗传信息的展开和处理是细胞多样性的基础。鉴于此,仔细审查
RNA 代谢的调节,前 mRNA 基因拷贝如何选择性剪接和聚腺苷酸化、编辑、
本地化和翻译监管将为理解复杂过程提供新途径,例如
作为学习和记忆基础的突触可塑性。这个概念促使分子神经科学家去寻找
用于定位和调节突触 RNA 的因子。我们才刚刚开始编制这些关键的列表
调节因子,例如 RNA 结合蛋白 (RBP),特别是在海马神经元的突触中
参与记忆,但迄今为止,人们对这些因素如何调节 RNA 知之甚少。我们实验室有
最近开发了一个新平台,用于活体中 RBP 的细胞特异性交联免疫沉淀 (CLIP)
小鼠大脑(cTag-CLIP),进一步加深了我们对细胞特异性调节功能的理解
RBP;然而,这项技术仅限于研究稳态 RNA 调节。这里我们描述了一部小说
揭示神经元 RBP 介导的 RNA 调节在突触可塑性中的作用的方法。这
称为 opto-CLIP 的方法将 cTag-CLIP 提供的细胞类型特异性分辨率与
前所未有的光遗传学精度,实现对特定神经元的非侵入性光学控制。一次
确定后,我们将通过在不同的亚细胞区室中执行 opto-CLIP 来提高细胞分辨率
评估与神经元功能相关的局部 RNA 调节。这项研究将加深我们对
RBP 介导的 RNA 调节,增强我们对 RNA 代谢在突触可塑性中的作用的了解,以及
为神经系统疾病的病理机制提供新的见解。总而言之,我是
对我研究 RNA 生物学的经验、达内尔实验室在神经科学和 CLIP 方面的基础以及
洛克菲勒大学丰富的研究环境将帮助我成功地利用光遗传学来研究
RBP 介导的 RNA 调节在突触可塑性中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth A Singer其他文献
Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation.
拟南芥 eIF3e 受 COP9 信号体调节,对发育和蛋白质翻译有影响。
- DOI:
10.1111/j.1365-313x.2007.03347.x - 发表时间:
2007-10-17 - 期刊:
- 影响因子:0
- 作者:
A. Yahalom;Tae;Bijoyita Roy;Ruth A Singer;A. V. von Arnim;D. Chamovitz - 通讯作者:
D. Chamovitz
Murine Perinatal β-Cell Proliferation and the Differentiation of Human Stem Cell–Derived Insulin-Expressing Cells Require NEUROD1
小鼠围产期 β 细胞增殖和人类干细胞的分化 — 表达胰岛素的细胞需要 NEUROD1
- DOI:
10.2337/db19-0117 - 发表时间:
2019-09-13 - 期刊:
- 影响因子:7.7
- 作者:
Anthony I. Romer;Ruth A Singer;Lina Sui;D. Egli;L. Sussel - 通讯作者:
L. Sussel
Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development
遗传证据表明 Nkx2.2 在胰腺内分泌谱系发育中主要作用于 Neurog3 下游
- DOI:
10.7554/elife.20010 - 发表时间:
2017-01-10 - 期刊:
- 影响因子:7.7
- 作者:
A. Churchill;Giselle Domínguez Gutiérrez;Ruth A Singer;David S. Lorberbaum;Kevin A Fischer;L. Sussel - 通讯作者:
L. Sussel
The Long Noncoding RNA Paupar Modulates PAX6 Regulatory Activities to Promote Alpha Cell Development and Function.
长非编码 RNA Paupar 调节 PAX6 调节活性以促进 Alpha 细胞发育和功能。
- DOI:
10.1016/j.cmet.2019.09.013 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:29
- 作者:
Ruth A Singer;L. Arnes;Yi Cui;Jiguang Wang;Yuqian Gao;Michelle A. Guney;Kristin E. Burnum;R. Rabadán;C. Ansong;G. Orr;L. Sussel - 通讯作者:
L. Sussel
Long noncoding RNAs are critical regulators of pancreatic islet development and function
长非编码 RNA 是胰岛发育和功能的关键调节因子
- DOI:
10.7916/d8-nnax-mb40 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Ruth A Singer - 通讯作者:
Ruth A Singer
Ruth A Singer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth A Singer', 18)}}的其他基金
Shedding light on the role of RNA binding protein-mediated RNA regulation in synaptic plasticity
揭示 RNA 结合蛋白介导的 RNA 调节在突触可塑性中的作用
- 批准号:
10456082 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
The role of long noncoding RNAs in regulating pancreas development and function
长链非编码RNA在调节胰腺发育和功能中的作用
- 批准号:
9150295 - 财政年份:2016
- 资助金额:
$ 6.64万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲栽培稻抗稻瘟病基因Pi69(t)的功能等位基因克隆及进化解析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Shedding light on the role of RNA binding protein-mediated RNA regulation in synaptic plasticity
揭示 RNA 结合蛋白介导的 RNA 调节在突触可塑性中的作用
- 批准号:
10456082 - 财政年份:2021
- 资助金额:
$ 6.64万 - 项目类别:
Mechanisms of Myotonic Dystrophy Type 2-causing CCTG DNA Repeat Instability
强直性肌营养不良 2 型导致 CCTG DNA 重复不稳定的机制
- 批准号:
9891078 - 财政年份:2018
- 资助金额:
$ 6.64万 - 项目类别:
Identifying Therapeutic Targets for RNA Splicing-Related Cardiomyopathy
确定 RNA 剪接相关心肌病的治疗靶点
- 批准号:
9195146 - 财政年份:2015
- 资助金额:
$ 6.64万 - 项目类别:
Red Cell Band 4.1 - Developmental Changes in RNA Splicing
红细胞带 4.1 - RNA 剪接的发育变化
- 批准号:
7894777 - 财政年份:2009
- 资助金额:
$ 6.64万 - 项目类别:
Red Cell Band 4.1 - Developmental Changes in RNA Splicing
红细胞带 4.1 - RNA 剪接的发育变化
- 批准号:
7533943 - 财政年份:2009
- 资助金额:
$ 6.64万 - 项目类别: