Proteomic Stable Isotope Probing as a Novel Approach for Linking Prebiotics with Active Gut Microbiota
蛋白质组稳定同位素探测作为连接益生元与活性肠道微生物群的新方法
基本信息
- 批准号:10276744
- 负责人:
- 金额:$ 38.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAnimalsAssimilationsBioinformaticsCarbon IsotopesCloud ComputingCoculture TechniquesCommunitiesComplementComplexComputer AnalysisDataData AnalysesDatabasesDetectionDiabetes MellitusDietDietary FiberDiseaseEnvironmentEquilibriumFoundationsGenotypeGoalsHealthHumanIn SituIn VitroInulinKnowledgeLabelLinkMachine LearningMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolismMetagenomicsMethodologyMethodsMicrobeModelingMusNutrition DisordersObesityOrganismOutcomePathway interactionsPatternPeptidesPerformancePlayPopulationProbioticsProteinsProteomicsPublic HealthReproducibilityResearchResearch PersonnelResourcesRibosomal RNARoleRunningShotgunsSpecificityTechniquesTherapeuticTimeWorkbasecarbon fibercomplex datacomputerized data processingcostdata acquisitiondata standardsdeep learning algorithmdysbiosisexperimental studygut bacteriagut microbesgut microbiomegut microbiotahemicellulosehigh throughput technologyhuman microbiotaimprovedin vivoinnovationlarge datasetsmaltodextrinmetabolic abnormality assessmentmetaproteomicsmetatranscriptomicsmicrobialmicrobial communitymicrobiomemicrobiotamicroorganismnovelnovel strategiesnutritionparallel computerprebioticspreventprotein biomarkerssearchable databasestable isotopetooltwo-dimensional
项目摘要
PROJECT SUMMARY/ABSTRACT
Characterization of the metabolic interactions between organisms is key to understanding the mechanisms of
disease and symbioses between microbes and their animal hosts. Our long-term goal is to advance the
applicability and accessibility of proteomic stable isotope probing (SIP) in ways that make it a valuable tool for
microbiome researchers looking to measure in situ metabolic interactions of human microbiota. The objective
of this proposal is to improve the performance and reproducibility of experimental measurements and
accelerate the computational analysis of proteomic SIP experiments and to demonstrate the value of this
method for studying the in vivo and in vitro metabolism of prebiotics by gut microbiota. Expected outcomes will
represent a significant advance, because optimizing the use of prebiotics as therapeutics requires identification
of the specific microorganisms capable of metabolizing prebiotics. By identifying proteins of specific taxa that
are synthesized as a direct result of prebiotic assimilation, proteomic SIP will provide unambiguous links
between prebiotic metabolism and the specific microorganisms responsible for this activity. We will accomplish
this objective by pursuing three specific aims: 1) to increase the performance and reproducibility of mass
spectrometry measurements by optimizing data-independent acquisition (DIA) methods for proteomic SIP; 2)
to significantly accelerate the computing-intensive database search step by adapting the Sipros algorithm to
use graphic processing units (GPUs) and cloud computing; and 3) to track in vivo and in vitro prebiotic
assimilation patterns by microbial populations within simple consortia and complex natural communities. Our
proposed work includes several innovations, such as the application of deep learning algorithms to improve the
analysis mass spectrometry data, leveraging GPU-based parallel computing and cloud computing to
accelerate the computational steps in the data analysis workflow, and using proteomic SIP for the first time to
track prebiotic metabolism by gut microbes. The expected outcomes of the project include (a) a new DIA-
based workflow for proteomic SIP that can identify significantly more labeled peptides at higher accuracy of
enrichment estimation, (b) a new computational workflow that is faster to run, more scalable to large datasets,
and more accessible to researchers, and (c) establish novel foundational knowledge on the specificity of
prebiotic metabolism by microbes in the gut. These outcomes will establish proteomic SIP as a valuable -omics
tool that will complement existing approaches to study the metabolism of gut microbiota, and specifically
highlight its ability to investigate metabolism of prebiotics and probiotics as they relate to treating microbial
dysbiosis and nutrition-related diseases.
项目概要/摘要
生物体之间代谢相互作用的表征是理解其机制的关键
疾病以及微生物与其动物宿主之间的共生关系。我们的长期目标是推动
蛋白质组稳定同位素探测 (SIP) 的适用性和可及性使其成为有价值的工具
微生物组研究人员希望测量人类微生物群的原位代谢相互作用。目标
该提案的目的是提高实验测量的性能和可重复性
加速蛋白质组 SIP 实验的计算分析并证明其价值
研究肠道微生物群对益生元的体内和体外代谢的方法。预期成果将
代表了一项重大进步,因为优化益生元作为治疗剂的使用需要确定
能够代谢益生元的特定微生物。通过识别特定分类群的蛋白质
作为前生元同化的直接结果而合成,蛋白质组 SIP 将提供明确的链接
益生元代谢和负责此活动的特定微生物之间的关系。我们将完成
通过追求三个具体目标来实现这一目标:1)提高质量的性能和再现性
通过优化蛋白质组 SIP 的数据独立采集 (DIA) 方法进行光谱测量; 2)
通过采用 Sipros 算法来显着加速计算密集型数据库搜索步骤
使用图形处理单元 (GPU) 和云计算; 3) 追踪体内和体外益生元
简单群落和复杂自然群落中微生物种群的同化模式。我们的
提出的工作包括多项创新,例如应用深度学习算法来改进
分析质谱数据,利用基于 GPU 的并行计算和云计算
加速数据分析工作流程中的计算步骤,并首次使用蛋白质组 SIP
追踪肠道微生物的益生元代谢。该项目的预期成果包括 (a) 一个新的 DIA-
基于蛋白质组 SIP 的工作流程,可以以更高的准确度识别更多标记的肽
富集估计,(b) 一种新的计算工作流程,运行速度更快,更适合大型数据集,
并且更容易为研究人员所利用,并且(c)建立关于其特殊性的新颖的基础知识
肠道微生物的益生元代谢。这些结果将使蛋白质组 SIP 成为有价值的组学
工具将补充现有的研究肠道微生物群代谢的方法,特别是
强调其研究益生元和益生菌代谢的能力,因为它们与治疗微生物有关
生态失调和营养相关疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongle Pan其他文献
Chongle Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongle Pan', 18)}}的其他基金
Proteomic Stable Isotope Probing as a Novel Approach for Linking Prebiotics with Active Gut Microbiota
蛋白质组稳定同位素探测作为连接益生元与活性肠道微生物群的新方法
- 批准号:
10627914 - 财政年份:2021
- 资助金额:
$ 38.09万 - 项目类别:
Proteomic Stable Isotope Probing as a Novel Approach for Linking Prebiotics with Active Gut Microbiota
蛋白质组稳定同位素探测作为连接益生元与活性肠道微生物群的新方法
- 批准号:
10463696 - 财政年份:2021
- 资助金额:
$ 38.09万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
- 批准号:
10735407 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别: