Optimizing macroencapsulation devices for islet transplantation via magnetic resonance oximetry
通过磁共振血氧测定法优化胰岛移植的宏观封装装置
基本信息
- 批准号:10276561
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAllogenicAmericanCell DensityCell SurvivalCell TransplantationCell physiologyCellsChronicClinicClinicalComplications of Diabetes MellitusComputer ModelsContainmentCoupledDevelopmentDevice DesignsDevice or Instrument DevelopmentDevicesDiffusionElementsEncapsulatedEvaluationFinite Element AnalysisGeometryGraft SurvivalHealthHydrogelsImmune systemImmunosuppressionIn VitroInsulinInsulin-Dependent Diabetes MellitusIslets of Langerhans TransplantationLabelLocationMagnetic ResonanceMagnetic Resonance ImagingMalignant NeoplasmsMeasuresMissionModelingMonitorMorbidity - disease rateMusOrganoidsOxygenOxygen saturation measurementPatientsPerformancePopulationProceduresProcessProtocols documentationProtonsPublic HealthRattusRegimenReplacement TherapyReporterResearchRiskRodent ModelSafetySiloxanesSiteSpatial DistributionSurfaceTechniquesTestingTimeTissuesTranslatingTranslationsTransplantationUnited States National Institutes of HealthValidationVascularizationWorkbaseclinical efficacydesigndiabetes riskdiabeticdiabetic patientdiabetic ratexperimental studygraft functionimprovedin silicoin vitro testingin vivoin vivo Modelin vivo evaluationinfection riskinsulin signalingisletmouse modelnon-invasive monitornovelpreclinical efficacypredictive modelingscale upspatiotemporalsuccesstissue oxygenationtooltype I diabeticvasculogenesis
项目摘要
PROJECT SUMMARY/ABSTRACT:
Clinical islet transplantation is a promising treatment for insulin-dependent diabetic patients, with the
potential to eliminate long-term secondary complications by restoring native insulin signaling. While clinical
successes have demonstrated the feasibility of achieving insulin independence through islet replacement
therapy, the necessity of a long term immunosuppressive regimen limits the widespread applicability of this
procedure, as the substantial risk associated with chronic immunosuppression outweighs the risk of diabetes
associated morbidities. As a result, much research has explored the development of macroencapsulation
devices to isolate transplanted cells from the recipient immune system. To date, these devices demonstrate
limited clinical efficacy, due in large part to limited oxygen delivery to encapsulated cells.
In previous work, we demonstrated the use of vasculogenic degradable hydrogels to enhance
vascularization, and therefore oxygenation, at the surface of macroencapsulation devices. Despite improved
vascularization, non-ideal device geometry limits encapsulated cell viability and function in vivo, as indicated by
in silico modeling of device oxygenation. As such, we seek to approach macroencapsulation device design using
computational modeling to optimize device oxygen distribution prior to fabrication and testing, and evaluate
device oxygenation in vitro and in vivo via a novel, siloxane probe-based magnetic resonance (MR) oximetry
technique, originally developed by co-PI Dr. Vikram Kodibagkar for cancer applications.
We hypothesize that MR oximetry, via siloxane core probe device labelling, will enable the first precise
tracking and evaluation of macroencapsulation device oxygenation in a spatiotemporal manner. We anticipate
that MR imaging will validate in silico finite element modeling predictions of oxygen distribution within varied
macroencapsulation device designs, and enable non-invasive, real-time tracking of macroencapsulation device
oxygenation levels in vivo.
These hypotheses will be addressed in the experiments of the following Specific Aims: (1) to validate in
silico-optimized macroencapsulation device oxygen gradients via MR oximetry in vitro; (2) to use non-invasive
MR oximetry to evaluate in vivo oxygenation of macroencapsulated cell grafts in real time; and (3) use MR
oximetry to evaluate macroencapsulation devices scaled to a larger rodent model. We anticipate that this study
will enable the design of improved macroencapsulation devices that significantly enhance encapsulated cell
survival and function in vivo. This approach to device design, validation, and in vivo evaluation may also facilitate
the process of device scale-up, potentially streamlining the process of macroencapsulation device translation to
the clinic.
项目概要/摘要:
临床胰岛移植是治疗胰岛素依赖型糖尿病患者的一种有前途的治疗方法,
通过恢复天然胰岛素信号传导来消除长期继发并发症的潜力。同时临床
成功证明了通过胰岛替代实现胰岛素独立的可行性
治疗中,长期免疫抑制疗法的必要性限制了该疗法的广泛应用
程序,因为与慢性免疫抑制相关的重大风险超过了糖尿病的风险
相关的疾病。因此,许多研究探索了宏观封装的发展
将移植细胞与受体免疫系统分离的装置。迄今为止,这些设备表明
临床疗效有限,很大程度上是由于向封装细胞输送的氧气有限。
在之前的工作中,我们演示了使用血管生成可降解水凝胶来增强
宏观封装装置表面的血管化,以及因此的氧合。尽管有所改善
血管化、非理想的装置几何形状限制了封装细胞的活力和体内功能,如
装置氧合的计算机模拟。因此,我们寻求使用宏封装器件设计
在制造和测试之前优化设备氧气分布的计算模型,并评估
通过基于硅氧烷探针的新型磁共振 (MR) 血氧测定法进行体外和体内氧合装置
技术最初由联合 PI Vikram Kodibagkar 博士开发用于癌症应用。
我们假设 MR 血氧测定法,通过硅氧烷核心探针装置标记,将能够实现第一个精确的血氧饱和度测定。
以时空方式跟踪和评估宏观封装装置氧合。我们预计
MR 成像将在硅片有限元建模中验证不同范围内氧气分布的预测
宏封装器件设计,并实现宏封装器件的非侵入式实时跟踪
体内氧合水平。
这些假设将在以下具体目标的实验中得到解决:(1)验证
通过体外 MR 血氧测定法进行计算机优化的宏观封装装置氧梯度; (2)采用非侵入式
MR 血氧测定法实时评估大封装细胞移植物的体内氧合作用; (3) 使用 MR
血氧测定法评估宏观封装装置缩放到更大的啮齿动物模型。我们预计这项研究
将能够设计改进的宏观封装装置,从而显着增强封装的电池
体内的生存和功能。这种设备设计、验证和体内评估方法也可能有助于
器件放大的过程,有可能简化宏封装器件转换的过程
诊所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vikram D. Kodibagkar其他文献
Vikram D. Kodibagkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vikram D. Kodibagkar', 18)}}的其他基金
One-shot morphologic, hemodynamic and metabolic MR imaging of brain tumors
脑肿瘤的一次性形态学、血流动力学和代谢 MR 成像
- 批准号:
10445086 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
One-shot morphologic, hemodynamic and metabolic MR imaging of brain tumors
脑肿瘤的一次性形态学、血流动力学和代谢 MR 成像
- 批准号:
10680562 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
One-shot morphologic, hemodynamic and metabolic MR imaging of brain tumors
脑肿瘤的一次性形态学、血流动力学和代谢 MR 成像
- 批准号:
10316545 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
One-shot morphologic, hemodynamic and metabolic MR imaging of brain tumors
脑肿瘤的一次性形态学、血流动力学和代谢 MR 成像
- 批准号:
10680562 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
Optimizing macroencapsulation devices for islet transplantation via magnetic resonance oximetry
通过磁共振血氧测定法优化胰岛移植的宏观封装装置
- 批准号:
10649668 - 财政年份:2021
- 资助金额:
$ 34.67万 - 项目类别:
ADVANCED MR FOR PROBING TUMOR MICROENVIRONMENT
用于探测肿瘤微环境的高级 MR
- 批准号:
8363920 - 财政年份:2011
- 资助金额:
$ 34.67万 - 项目类别:
ADVANCED MR TECHNOLOGIES FOR PROBING THE TUMOR MICROENVIRONMENT
用于探测肿瘤微环境的先进 MR 技术
- 批准号:
8171671 - 财政年份:2010
- 资助金额:
$ 34.67万 - 项目类别:
1H MRI based nanosensors for imaging tumor oxygenation
基于 1H MRI 的纳米传感器用于肿瘤氧合成像
- 批准号:
8412960 - 财政年份:2009
- 资助金额:
$ 34.67万 - 项目类别:
COMPRESSED SENSING APPLICATIONS TO METABOLIC IMAGING
压缩传感在代谢成像中的应用
- 批准号:
7956995 - 财政年份:2009
- 资助金额:
$ 34.67万 - 项目类别:
相似国自然基金
抗骨髓瘤的新型同种异体嵌合抗原受体T(CAR T)细胞疗法研发
- 批准号:82270210
- 批准年份:2022
- 资助金额:68 万元
- 项目类别:面上项目
胸腺上皮细胞在小鼠后肢同种异体复合组织移植中的免疫调节作用及相关机制研究
- 批准号:82102354
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过表达MicroRNA-199a-3p的BMSCs来源的外泌体抑制小鼠DC功能诱导同种异体心脏移植免疫耐受的机制研究
- 批准号:82160081
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
m6A甲基转移酶Zc3h13调控同种异体iPSCs的免疫原性构建新型心肌补片的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
具有靶向识别和序贯治疗功能的纳米微球对血管化同种异体复合组织移植术后免疫抑制的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Sustained regulation of hypothalamus-pituitary-ovary hormones with tissue-engineered ovarian constructs as a treatment for osteoporosis in females
利用组织工程卵巢结构持续调节下丘脑-垂体-卵巢激素作为女性骨质疏松症的治疗方法
- 批准号:
10659277 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Deciphering unintended large gene modifications in gene editing for sickle cell disease
破译镰状细胞病基因编辑中意外的大基因修饰
- 批准号:
10720685 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
- 批准号:
10716174 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别: