Rapid, Robust, and Routine: Multiplexed Microscopy for Spatially Resolved Whole-Transcriptomic Single-Cell Profiling and the Construction of Cell Atlases of all Tissues and in all Organisms
快速、稳健和常规:用于空间分辨全转录组单细胞分析和所有组织和所有生物体细胞图谱构建的多重显微镜
基本信息
- 批准号:10278148
- 负责人:
- 金额:$ 42.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-24 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAreaAtlasesBar CodesBehaviorBiologicalBiomedical ResearchCatalogsCategoriesCell CountCell physiologyCellsClinicalColorDNAData AnalysesData CollectionData CompressionExcisionExonsFluorescenceFluorescence MicroscopyFluorescent in Situ HybridizationFormalinGene ExpressionGenomeImageImage CompressionIn SituIndividualKineticsLifeLocationMapsMeasurementMeasuresMethodologyMethodsMicroscopyModificationMolecularMorphologyNamesOrganismParaffin EmbeddingPerformancePhylogenetic AnalysisPreparationProtein IsoformsProtocols documentationQuality ControlRNARNA SplicingResolutionRetrievalRoleSamplingSchemeSignal TransductionSpeedStainsSynapsesTechniquesTechnologyTimeTissue EmbeddingTissue HarvestingTissuesVariantbasecell behaviorcell typecostdesignimaging approachimprovedmicrobial communitymicroscopic imagingmolecular imagingmolecular scalenovelnovel strategiessample archivesample fixationsingle moleculesingle-cell RNA sequencingsubmicrontissue preparationtooltranscriptometranscriptomicstumorigenesis
项目摘要
Image-based approaches to single-cell transcriptomics represent one of the most exciting emerging biomedical
research tools. These technologies leverage massively multiplexed single-molecule RNA imaging to provide a
direct measure of not just the expression profile of every cell within intact samples but also the location of every
RNA molecule within those cells. As such, these techniques combine the ability of single-cell RNA sequencing
to generate whole-transcriptome expression measurements and discover and catalog cell types, states, and
lineage with the ability of high-resolution, fluorescence microscopy to interrogate the molecular organization of
cells, define their morphology, and reveal their interactions and organization. Thus, in situ transcriptome-scale
molecular imaging promises advances in a vast array of topics, from the role of intracellular RNA organization in
synaptic remodeling, to the spatial organization of commensal microbial communities and its effect on host gene
expression, to the modulatory role of the microenvironment in tumorigenesis, to name only a few examples.
One image-based single-cell transcriptomics technique—MERFISH (multiplexed error robust fluorescence
in situ hybridization)—has emerged as a leading technology given its high resolution, high capture efficiency,
single-molecule sensitivity, and unparalleled throughput combined with its proven ability to map the intracellular
organization of large fractions of the transcriptome and discover, functionally annotate, and map cell types within
intact tissues. However, MERFISH remains a nascent technology, and to fully unlock the transformative potential
of both MERFISH and spatially resolved single-cell transcriptomics in general, this technology must be matured.
First, MERFISH must be made whole-transcriptome. Multiplexing is not the barrier, rather several RNA
categories—highly expressed RNAs, short RNAs, and highly homologous RNAs—remain challenging for this
technique. Through a combination of new experimental and computational advances, we will extend MERFISH
to these categories, creating whole-transcriptome MERFISH and allowing hypothesis-free discovery.
Second, the biological demands for single-cell throughput are staggering, as even small tissues often contain
tens of millions of cells. By combining new sample preparation techniques, an emerging approach to ultra-high-
throughput microscopy, and advanced image storage and analysis tools, we will increase the throughput of
MERFISH by orders of magnitude, allowing characterization of large tissue areas and tens of millions of cells.
Finally, the transformative potential for whole-transcriptome imaging could be very broad, yet MERFISH has
been validated in only a few tissues. Thus, we will provide a robust suite of sample preparation protocols and
quality metrics to make routine the application of MERFISH to all tissues and organisms.
Here we will unlock the potential of this emerging technique by delivering rapid, robust, and routine whole-
transcriptome MERFISH. As gene expression is key to cellular identity and behavior in all domains of life, this
general tool could empower a truly remarkable range of basic and translational biomedical research.
基于图像的单细胞转录组学方法代表了最令人兴奋的新兴生物医学方法之一
这些技术利用大规模多重单分子 RNA 成像来提供
不仅可以直接测量完整样本中每个细胞的表达谱,还可以直接测量每个细胞的位置
因此,这些技术结合了单细胞 RNA 测序的能力。
生成全转录组表达测量并发现和编目细胞类型、状态和
谱系具有高分辨率荧光显微镜来询问分子组织的能力
细胞,定义它们的形态,并揭示它们的相互作用和组织,从而实现原位转录组规模。
分子成像的进步有望在众多主题中发挥作用,从细胞内 RNA 组织的作用开始
突触重塑,共生微生物群落的空间组织及其对宿主基因的影响
表达,微环境在肿瘤发生中的调节作用,仅举几个例子。
一种基于图像的单细胞转录组学技术——MERFISH(多重误差稳健荧光
原位杂交)——由于其高分辨率、高捕获效率,已成为一项领先技术,
单分子灵敏度、无与伦比的通量以及经过验证的细胞内图谱能力
组织大部分转录组并发现、功能注释和绘制其中的细胞类型
然而,MERFISH 仍然是一项新兴技术,并能充分释放变革潜力。
一般来说,对于 MERFISH 和空间分辨单细胞转录组学来说,这项技术必须成熟。
首先,MERFISH 必须制成全转录组,多重化不是障碍,而是几个 RNA。
类别(高表达 RNA、短 RNA 和高度同源 RNA)对此仍然具有挑战性
通过结合新的实验和计算进步,我们将扩展 MERFISH 技术。
针对这些类别,创建全转录组 MERFISH 并允许无假设的发现。
其次,对单细胞通量的生物学需求是惊人的,因为即使是小组织也常常含有
通过结合新的样品制备技术,一种新兴的超高通量方法。
吞吐量显微镜,以及先进的图像存储和分析工具,我们将提高吞吐量
MERFISH 数量级,可对大组织区域和数千万个细胞进行表征。
最后,全转录组成像的变革潜力可能非常广泛,但 MERFISH 已经
仅在少数组织中得到验证,因此,我们将提供一套强大的样品制备方案和
质量指标使 MERFISH 应用于所有组织和生物体成为常规。
在这里,我们将通过提供快速、稳健和常规的整体来释放这种新兴技术的潜力。
转录组 MERFISH 是生命各个领域细胞身份和行为的关键。
通用工具可以为一系列真正卓越的基础和转化生物医学研究提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Moffitt其他文献
Jeffrey Moffitt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Moffitt', 18)}}的其他基金
Center for multidimensional atlas of the human heart
人类心脏多维图谱中心
- 批准号:
10530968 - 财政年份:2022
- 资助金额:
$ 42.92万 - 项目类别:
Center for multidimensional atlas of the human heart
人类心脏多维图谱中心
- 批准号:
10661824 - 财政年份:2022
- 资助金额:
$ 42.92万 - 项目类别:
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
- 批准号:
10352579 - 财政年份:2022
- 资助金额:
$ 42.92万 - 项目类别:
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
- 批准号:
10612336 - 财政年份:2022
- 资助金额:
$ 42.92万 - 项目类别:
Rapid, Robust, and Routine: Multiplexed Microscopy for Spatially Resolved Whole-Transcriptomic Single-Cell Profiling and the Construction of Cell Atlases of all Tissues and in all Organisms
快速、稳健和常规:用于空间分辨全转录组单细胞分析和所有组织和所有生物体细胞图谱构建的多重显微镜
- 批准号:
10494105 - 财政年份:2021
- 资助金额:
$ 42.92万 - 项目类别:
Rapid, Robust, and Routine: Multiplexed Microscopy for Spatially Resolved Whole-Transcriptomic Single-Cell Profiling and the Construction of Cell Atlases of all Tissues and in all Organisms
快速、稳健和常规:用于空间分辨全转录组单细胞分析和所有组织和所有生物体细胞图谱构建的多重显微镜
- 批准号:
10797366 - 财政年份:2021
- 资助金额:
$ 42.92万 - 项目类别:
Rapid, Robust, and Routine: Multiplexed Microscopy for Spatially Resolved Whole-Transcriptomic Single-Cell Profiling and the Construction of Cell Atlases of all Tissues and in all Organisms
快速、稳健和常规:用于空间分辨全转录组单细胞分析和所有组织和所有生物体细胞图谱构建的多重显微镜
- 批准号:
10689218 - 财政年份:2021
- 资助金额:
$ 42.92万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 42.92万 - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 42.92万 - 项目类别:
Connecting Latinos en Pareja: A Couples-based HIV Prevention Intervention for Latino Male Couples
连接拉丁裔与帕雷哈:针对拉丁裔男性夫妇的基于夫妇的艾滋病毒预防干预措施
- 批准号:
10706860 - 财政年份:2023
- 资助金额:
$ 42.92万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 42.92万 - 项目类别:
mAnaging siCkle CELl disease through incReased AdopTion of hydroxyurEa in Nigeria (ACCELERATE)
在尼日利亚通过增加羟基脲的使用来控制镰状细胞病(加速)
- 批准号:
10638598 - 财政年份:2023
- 资助金额:
$ 42.92万 - 项目类别: