Deconstructing Spasticity after Spinal Cord Injury

解构脊髓损伤后的痉挛

基本信息

  • 批准号:
    10228539
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The goal of this study is to investigate the cellular and molecular mechanisms underlying spasticity, and establish the groundwork for future translational studies in the clinic. A majority of US Veterans with SCI experience clinically significant spasticity, which can disrupt rehabilitation and negatively impact quality-of-life, e.g., mobility, personal hygiene, intimate relationships (Holtz et al., 2017; Skold et al., 1999; Walter et al., 2002). Current spasticity management strategies are palliative, and fail to address the underlying cause. Available treatment options also carry high risk for adverse effects due to non-specific action or long-term use (Adams et al., 2005; Kheder et al., 2012). A major hurdle facing the development of better treatments for SCI- induced spasticity is a lack of mechanistic insight into how injury leads to disability. To advance an evidence-based investigation toward improving spasticity management, we will carry out experiments with two objectives: In Objective 1, we will implement conditional knockout studies to understand the mechanistic contribution of Rac1 specifically in motor neurons and astrocytes to spasticity after SCI. Our previous work demonstrates that pharmacological inhibitors can block Rac1-regulated dendritic spine remodeling in motor neurons and reduce spasticity (Bandaru et al., 2015; Zhao et al., 2016). However, our studies thus far have relied upon the use of a pharmacological Rac1-inhibitor, NSC23766, which precluded our ability to determine the drug’s direct action on neurons. It is also unclear why NSC23766 rendered only partial restoration of normal reflex output, and dose- limiting side effects have prevented longer-term treatment. Thus, to clarify the contribution of Rac1 signaling in neurons and astrocytes, we will use a 1) virally-mediated Cre-Lox system to knockout Rac1 expression in motor neurons, and 2) transgenic mice lacking Rac1 specifically in astrocytes. Astrocytes are integral to synaptic plasticity and maintain neuronal hyperexcitability, but have not been studied within the context of spasticity after SCI. We will use electrophysiological and behavioral tests to measure evoked H-reflex excitability and spasticity. To control for other changes in motor function, we will also monitor gross locomotor function. To assess dendritic spine dysgenesis associated with spasticity, and other anatomical changes, we will perform image analyses in “cleared” spinal cord tissue. In Objective 2, to establish the groundwork for clinical translation, we will also assess the feasibility of two translationally-relevant approaches targeting the Rac1-pathway. Specifically, first we will assess the utility of a viral-based gene therapy “platform” to knockdown Rac1 expression and alleviate spasticity. We have previously used viral-delivery of custom-made shRNA constructs to effectively target misexpressed proteins and modify neuropathic pain after injury or disease (Samad et al., 2013; Tan et al., 2015). In the second approach, we will determine the potential utility of “repurposing” romidepsin, a clinically available drug to disrupt PAK1, a downstream effector linking Rac1 to dendritic spine reorganization (Hayashi et al., 2007). In summary, findings from this study could be expected to not only improve the mechanistic understanding of spasticity and advance the field toward clinical application, but also potentially extend beyond SCI, to conditions such as MS, TBI, stroke that are widely prevalent among US Veterans.
本研究的目的是研究痉挛背后的细胞和分子机制,以及 为未来临床转化研究奠定基础,大多数患有 SCI 的美国退伍军人。 经历临床上显着的痉挛,这可能会扰乱康复并对生活质量产生负面影响, 例如,流动性、个人卫生、亲密关系(Holtz 等人,2017 年;Skold 等人,1999 年;Walter 等人, 2002)。当前的痉挛管理策略是姑息性的,未能解决根本原因。 由于非特异性作用或长期使用,现有的治疗方案也存在很高的不良反应风险 (Adams 等,2005;Kheder 等,2012)开发更好的 SCI 治疗方法面临的主要障碍是 诱发性痉挛是指缺乏对损伤如何导致残疾的机制认识。 为了推进改善痉挛管理的循证调查,我们将开展 实验有两个目标: 在目标 1 中,我们将实施条件敲除研究,以了解 Rac1 特别在运动神经元和星形胶质细胞中导致 SCI 后的痉挛。 药物抑制剂可以阻断运动神经元中 Rac1 调节的树突棘重塑,并减少 痉挛(Bandaru 等人,2015;Zhao 等人,2016)然而,迄今为止我们的研究依赖于使用 药理学 Rac1 抑制剂 NSC23766,这使我们无法确定药物对 还不清楚为什么 NSC23766 只能部分恢复正常反射输出,并且剂量- 有限的副作用阻碍了长期治疗因此,澄清 Rac1 信号传导的贡献。 神经元和星形胶质细胞,我们将使用 1) 病毒介导的 Cre-Lox 系统来敲除 Rac1 表达 运动神经元,2)星形胶质细胞中特异缺乏 Rac1 的转基因小鼠是不可或缺的。 突触可塑性并维持神经过度兴奋,但尚未在以下背景下进行研究 SCI 后的痉挛状态我们将使用电生理学和行为测试来测量诱发的 H 反射。 为了控制运动功能的其他变化,我们还将监测总体运动。 为了评估与痉挛和其他解剖学变化相关的树突棘发育不全,我们 将在“清除”的脊髓组织中进行图像分析。 在目标 2 中,为了为临床转化奠定基础,我们还将评估以下两种方法的可行性: 具体来说,我们将评估针对 Rac1 通路的翻译相关方法。 我们有基于病毒的基因治疗“平台”来抑制 Rac1 表达并缓解痉挛。 以前使用病毒传递定制的 shRNA 构建体来有效靶向错误表达的蛋白质 并改善受伤或疾病后的神经性疼痛(Samad 等人,2013;Tan 等人,2015)。 方法,我们将确定“重新利用”罗米地辛的潜在效用,罗米地辛是一种临床可用的药物 破坏 PAK1,一种连接 Rac1 与树突棘重组的下游效应子 (Hayashi et al., 2007)。 总之,这项研究的结果不仅可以提高对机制的理解 痉挛并推动该领域走向临床应用,但也有可能扩展到 SCI 之外, 多发性硬化症、创伤性脑损伤、中风等疾病在美国退伍军人中广泛流行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Michael Tan其他文献

Andrew Michael Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Michael Tan', 18)}}的其他基金

Development of a 3D-VR Structural Analysis Software Ecosystem for SCI/D Research
开发用于 SCI/D 研究的 3D-VR 结构分析软件生态系统
  • 批准号:
    10615864
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of a 3D-VR Structural Analysis Software Ecosystem for SCI/D Research
开发用于 SCI/D 研究的 3D-VR 结构分析软件生态系统
  • 批准号:
    10482499
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Deconstructing Spasticity after Spinal Cord Injury
解构脊髓损伤后的痉挛
  • 批准号:
    10454817
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Abnormal Dendritic Spines Underlie Neuropathic Pain and Spasticity in SCI
异常树突棘是 SCI 中神经病理性疼痛和痉挛的基础
  • 批准号:
    9207355
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Abnormal Dendritic Spines Underlie Neuropathic Pain and Spasticity in SCI
异常树突棘是 SCI 中神经病理性疼痛和痉挛的基础
  • 批准号:
    8672829
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
  • 批准号:
    82274368
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
  • 批准号:
    82273739
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Transovarial transmission of yersinia pestis in fleas
跳蚤中鼠疫耶尔森氏菌的跨卵巢传播
  • 批准号:
    10727534
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
  • 批准号:
    10568723
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CD98hc Brain Shuttles for Delivering Off-the-shelf Neuroprotective Antibodies in Alzheimer's Disease
CD98hc 脑穿梭机为阿尔茨海默病提供现成的神经保护抗体
  • 批准号:
    10566062
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidation of Tumor Resistance Mechanisms in Tuberous Sclerosis Complex-Associated Renal Angiomyolipoma for the Design of Novel Nanotherapies
阐明结节性硬化症相关肾血管平滑肌脂肪瘤的肿瘤抵抗机制,用于设计新型纳米疗法
  • 批准号:
    10585048
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development and Translation of D-glucose as a Diagnostic Agent for MRI of Cancer
D-葡萄糖作为癌症 MRI 诊断剂的开发和转化
  • 批准号:
    10732247
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了