Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
基本信息
- 批准号:10218211
- 负责人:
- 金额:$ 27.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffectAmino Acid SequenceAnticodonArchaeaBindingBiochemicalBiologicalBiological AssayBiological ProcessBiologyBiophysicsCatalysisCellsChemicalsChimera organismComplementComplexCrystallizationDefectDeuteriumDiseaseEndocrineEnsureEnzymatic BiochemistryEnzymesEukaryotaExhibitsFamilyFluorouracilGeneticGenetic CodeGenetic TranscriptionGuanosineHealthHumanHuman BiologyHydrogenIndividualKineticsLifeLinkMaintenanceMass Spectrum AnalysisMethylationMethyltransferaseModelingModificationMolecularMolecular ConformationMutationNeurologicNucleic AcidsNucleotidesOrthologous GenePathway interactionsPhenotypePlayPositioning AttributeProcessProductionProtein BiosynthesisPurine NucleotidesRNARNA BiochemistryRNA metabolismReactionRibosomesRoentgen RaysRoleS-AdenosylhomocysteineS-AdenosylmethionineSaccharomyces cerevisiaeStructureSubstrate SpecificitySurfaceSyndromeSynthesis ChemistryTransfer RNATranslationsVariantVertebratesYeastsZebrafishanalogbasebiological adaptation to stressdimerdisease phenotypedrug sensitivityflexibilityhuman diseasein vitro activityin vivoinsightinterdisciplinary approachnew therapeutic targetnovelparalogous genestructural biologytRNA Methyltransferases
项目摘要
PROJECT SUMMARY/ ABSTRACT
Transfer RNAs (tRNAs) are the universal adaptor molecules necessary to convert the nucleic acid-based genetic
code to protein sequence during protein synthesis (translation) by the ribosome. This process is universally
conserved and fundamental to all life, and, as such, defects in the molecular players of translation, including
tRNAs, result in diverse human diseases. Specific chemical modifications such as methylation are common in
tRNA, but a detailed understanding of the enzymes that incorporate them and their contributions to tRNA function
(and disfunction in disease) have only recently emerged for a few select examples. Since the discovery of the
tRNA methyltransferase (Trm10) in Saccharomyces cerevisiae, an accumulating body of evidence, including
phenotypes in yeast and a multisymptomatic disease associated with human mutations, has established a
significant role for Trm10 in tRNA biology. To better understand the implications of Trm10 modification, the
mechanism by which Trm10 recognizes and acts on tRNA needs to be addressed. This project aims to determine
the molecular basis for Trm10 mechanism and function using a multi-disciplinary approach. Genetic, biochemical
and molecular enzymology approaches will be combined with structural analyses of enzyme-tRNA complexes,
and synthetic analogs of the native methyl donor, S-adenosyl-L-methionine, to uniquely identify the role of Trm10
in the maintenance of a high quality pool of tRNA. The studies will be performed in three complementary but
independent aims that will: 1) Determine the molecular mechanism of methylation by Trm10, using biophysical
and x-ray crystallographic structural analysis enabled by a novel mechanism (SAM analog)-based approach to
trap enzyme-tRNA complexes, and complemented by biochemical analyses of Trm10 variants and studies to
identify alternative substrates for Trm10 enzymes, cellular localization and native modification status; 2) Identify
the molecular basis for tRNA substrate-selectivity of yeast and human Trm10 orthologs through detailed
consideration of tRNA structure and stability; and, 3) Assess the roles of m1G9 in Trm10 target tRNAs in yeast
and the zebrafish vertebrate model. Collectively, the proposed studies will advance the fields of enzymology,
RNA biochemistry and tRNA biology by providing mechanistic and biological insight into a tRNA modification
enzyme that is universally conserved among eukaryotes and critically important for human biology, yet whose
molecular mechanism and biological functions are not at all understood. These results will also provide new
insight into the dynamic landscape of tRNA modifications in multicellular eukaryotes.
项目概要/摘要
转移 RNA (tRNA) 是转换基于核酸的遗传物质所必需的通用接头分子。
在核糖体合成(翻译)蛋白质过程中编码蛋白质序列。这个过程是通用的
对所有生命来说都是保守的和基础的,因此,翻译分子参与者的缺陷,包括
tRNA 会导致多种人类疾病。特定的化学修饰(例如甲基化)常见于
tRNA,但详细了解整合它们的酶及其对 tRNA 功能的贡献
(以及疾病中的功能障碍)直到最近才出现了一些选定的例子。自从发现
酿酒酵母中的 tRNA 甲基转移酶 (Trm10),证据不断积累,包括
酵母表型和与人类突变相关的多症状疾病,已经建立了
Trm10 在 tRNA 生物学中发挥着重要作用。为了更好地理解 Trm10 修饰的影响,
需要解决 Trm10 识别 tRNA 并作用于 tRNA 的机制。该项目旨在确定
使用多学科方法研究 Trm10 机制和功能的分子基础。遗传、生化
分子酶学方法将与酶-tRNA复合物的结构分析相结合,
以及天然甲基供体 S-腺苷-L-甲硫氨酸的合成类似物,以独特地识别 Trm10 的作用
维持高质量的 tRNA 库。这些研究将在三个互补但
独立目标将: 1) 利用生物物理学确定 Trm10 甲基化的分子机制
以及基于新机制(SAM 模拟)的 X 射线晶体结构分析
捕获酶-tRNA 复合物,并辅以 Trm10 变体的生化分析和研究
确定 Trm10 酶的替代底物、细胞定位和天然修饰状态; 2)识别
通过详细的研究,了解酵母和人类 Trm10 直系同源物 tRNA 底物选择性的分子基础
考虑 tRNA 结构和稳定性; 3) 评估 m1G9 在酵母 Trm10 靶 tRNA 中的作用
和斑马鱼脊椎动物模型。总的来说,拟议的研究将推动酶学领域的发展,
RNA 生物化学和 tRNA 生物学,提供对 tRNA 修饰的机制和生物学见解
这种酶在真核生物中普遍保守,对人类生物学至关重要,但其
分子机制和生物学功能根本不被了解。这些结果也将提供新的
深入了解多细胞真核生物中 tRNA 修饰的动态景观。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme L Conn其他文献
Identification of new inhibitors of protein kinase R guided by statistical modeling.
统计模型指导下鉴定新的蛋白激酶 R 抑制剂。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.7
- 作者:
R. Bryk;Kangyun Wu;Brian C Raimundo;Paul E Boardman;Ping Chao;Graeme L Conn;E. Anderson;James L Cole;Nigel P Duffy;C. Nathan;John H Griffin - 通讯作者:
John H Griffin
Graeme L Conn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme L Conn', 18)}}的其他基金
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
9891948 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10736791 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10359208 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
Mechanisms and biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
10736306 - 财政年份:2018
- 资助金额:
$ 27.21万 - 项目类别:
Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
9980946 - 财政年份:2018
- 资助金额:
$ 27.21万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10599247 - 财政年份:2014
- 资助金额:
$ 27.21万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10381447 - 财政年份:2014
- 资助金额:
$ 27.21万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8386211 - 财政年份:2012
- 资助金额:
$ 27.21万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8496700 - 财政年份:2012
- 资助金额:
$ 27.21万 - 项目类别:
相似国自然基金
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌肿瘤微环境中CD39+CD69+终末CD8+T细胞通过腺苷通路影响Th细胞功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺苷异常积累影响糖尿病伤口修复的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
选择性多聚腺苷酸化关联的遗传变异对肺腺癌发病风险的影响及机制研究
- 批准号:82273715
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
DNA甲基化对选择性多聚腺苷酸化的影响及在肝癌复发中的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
ADA2 Diagnostic Platform: Point-of-care test for determination of patient enzyme levels for diagnosis of the rare disease Deaminase2 Deficiency (DADA2)
ADA2 诊断平台:用于测定患者酶水平的即时检测,以诊断罕见疾病脱氨酶 2 缺乏症 (DADA2)
- 批准号:
10698520 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Receptor-mediated dysfunction of satellite glia and uninjured sensory neurons as a novel link between referred neuropathic pain and bladder disease
卫星胶质细胞和未损伤感觉神经元受体介导的功能障碍是牵涉性神经性疼痛和膀胱疾病之间的新联系
- 批准号:
10602919 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
Modular Reagents for Programmable RNA Manipulation by Endogenous Proteins
用于内源蛋白可编程 RNA 操作的模块化试剂
- 批准号:
10605050 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别: