A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws

使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统

基本信息

  • 批准号:
    10218941
  • 负责人:
  • 金额:
    $ 23.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Summary/Abstract: Our long-range goal is to develop a novel semi-autonomous, minimally-invasive, image-guided neurosurgical robotic workstation that consists of a robotic positioning mechanism, a continuum manipulator, flexible instruments, and flexible implants (i.e., flexible pedicle screws (FPSs)) to enable the next generation of minimally- and less-invasive spinal interventions. By providing access to regions within vertebral body, which currently are not accessible utilizing conventional rigid surgical instruments, this neurosurgical robotic workstation will enable surgical treatment of various bone defects in spine such as compression on the spinal cord and/or nerve roots, metastatic bone disease, and vertebral compression fractures due to severe osteoporosis. For this project, we mainly will focus on the mechanical design, development, basic control, and assessment of the subsystems of this novel robotic system with the goal of minimally invasive spinal fusion of osteoporotic vertebrae. Approximately 54 million Americans age 50 and older have osteoporosis causing an estimated two million broken bones per year in the US only. Vertebral fractures are the most common type of osteoporotic fractures (about 47%), which can lead to back pain, loss of height, and further vertebral and non-vertebral fractures. Failure of non-surgical treatments often leads to a spinal fusion surgery to restore stability of the spine using Rigid Pedicle Screws (RPSs). However, anatomical constraints and rigidity of instruments and screws force the surgeon to typically implant the screw inside the low bone mineral density (BMD) regions of the vertebrae in an osteoporotic spine. This results in an increased risk of screws loosening, pullout, and subsequently a surgical failure. It is our central hypothesis that utilizing the proposed minimally-invasive robotic system, the success rate of spinal fusions with RPSs can be significantly improved. This improvement will happen by (i) developing a biomechanical analysis module to plan a curved drilling trajectory based on the spatial (3D) BMD in the vertebra obtained by QCT scans; (ii) increasing the reachability of the surgeons and enabling them to drill in high-BMD regions of vertebra using a steerable drilling robot and the curved-drilling technique; (iii) selectively implanting/anchoring the FPSs within the pre-planned drilled curved trajectories inside the high-BMD regions, which can improve the pullout strength and stability of fusion; (iv) Biomechanical analysis of the fusion with FPS and/or bone cemnet to optimize the spine stability, prevent vertebral collapse, and a need for revision surgery. The proposed contribution is significant, high impact, and innovative since it offers to eliminate the aforementioned complications of current spinal fusion surgery by proposing novel and innovative techniques. To our knowledge, robotically-assisted techniques utilizing a steerable drilling robot and FPSs have not been developed for a minimally invasive spinal fusion of osteoporotic vertebrae. Our goal is to demonstrate that the proposed system can significantly improve the current treatment of osteoporotic vertebrae and shift the current clinical paradigm.
摘要/摘要: 我们的长期目标是开发一种新型的半自主、微创、图像引导的神经外科手术 机器人工作站由机器人定位机构、连续体机械手、柔性 器械和柔性植入物(即柔性椎弓根螺钉 (FPS)),以实现下一代最小化 以及微创脊柱干预措施。通过提供对椎体内区域的访问,这些区域目前是 这种神经外科机器人工作站无法使用传统的刚性手术器械进行操作 脊柱各种骨缺损的手术治疗,例如脊髓和/或神经根受压, 转移性骨病和严重骨质疏松导致的椎体压缩性骨折。对于这个项目,我们 主要关注子系统的机械设计、开发、基础控制和评估 这种新型机器人系统的目标是对骨质疏松椎骨进行微创脊柱融合。 大约 5400 万 50 岁及以上的美国人患有骨质疏松症,估计造成 200 万人患有骨质疏松症 仅在美国每年就有骨折。椎骨骨折是最常见的骨质疏松性骨折类型 (约 47%),这会导致背痛、身高下降以及进一步的椎骨和非椎骨骨折。失败 非手术治疗通常会导致脊柱融合手术,以使用刚性恢复脊柱的稳定性 椎弓根螺钉 (RPS)。然而,解剖学限制以及器械和螺钉的刚性迫使 外科医生通常将螺钉植入椎骨的低骨矿物质密度 (BMD) 区域内 骨质疏松的脊柱。这会导致螺钉松动、拔出以及随后进行手术的风险增加 失败。 我们的中心假设是,利用所提出的微创机器人系统,手术的成功率 RPS 的脊柱融合可以得到显着改善。这种改进将通过以下方式实现:(i) 开发 生物力学分析模块,根据椎骨空间 (3D) BMD 规划弯曲钻孔轨迹 通过QCT扫描获得; (ii) 增加外科医生的可达性,使他们能够在高 BMD 中钻孔 使用可操纵钻孔机器人和弯曲钻孔技术对椎骨区域进行钻孔; (三) 有选择地 将 FPS 植入/锚定在高 BMD 区域内预先规划的钻孔弯曲轨迹内, 提高拉拔强度和熔合稳定性; (iv) 与 FPS 融合的生物力学分析 和/或骨水泥网,以优化脊柱稳定性,防止椎骨塌陷,以及修复手术的需要。 拟议的贡献意义重大、影响力大且具有创新性,因为它消除了 通过提出新颖和创新的技术来解决当前脊柱融合手术的上述并发症。到 据我们所知,利用可操纵钻井机器人和 FPS 的机器人辅助技术尚未被开发出来。 专为骨质疏松椎骨的微创脊柱融合而开发。我们的目标是证明 所提出的系统可以显着改善目前骨质疏松椎体的治疗方法并改变目前的治疗方法 临床范式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farshid Alambeigi其他文献

Farshid Alambeigi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farshid Alambeigi', 18)}}的其他基金

A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
  • 批准号:
    10742476
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
  • 批准号:
    10473273
  • 财政年份:
    2022
  • 资助金额:
    $ 23.44万
  • 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
  • 批准号:
    10374927
  • 财政年份:
    2021
  • 资助金额:
    $ 23.44万
  • 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
  • 批准号:
    10541197
  • 财政年份:
    2021
  • 资助金额:
    $ 23.44万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
Console Upgrade for 4.7T PET-MRI Preclinical Scanner
4.7T PET-MRI 临床前扫描仪控制台升级
  • 批准号:
    10630520
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
  • 批准号:
    10822502
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
  • 批准号:
    10814562
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
  • 批准号:
    10679809
  • 财政年份:
    2023
  • 资助金额:
    $ 23.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了