Platelet mass microarchitecture as a regulator of thrombin production
血小板质量微结构作为凝血酶产生的调节剂
基本信息
- 批准号:10218337
- 负责人:
- 金额:$ 23.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnticoagulantsArchitectureAreaArtificial IntelligenceBiochemicalBiochemical ReactionBiochemistryBlood Coagulation FactorBlood PlateletsBlood VesselsBrainCardiovascular systemCessation of lifeClinicalCoagulantsCoagulation ProcessCollaborationsCollectionComplexConfined SpacesDataDepositionDiffusionDimensionsDrug DesignElectron MicroscopyElementsFeedbackFibrinFluorescenceGenerationsGeometryGoalsHeartHemophilia AHemorrhageHemostatic AgentsHemostatic DisordersHemostatic functionHeterogeneityImageInjuryIonsKineticsKnowledgeLettersMediatingMethodsMicroscopyModelingMolecularMonitorMonte Carlo MethodMovementMusMyocardial InfarctionPathologicPennsylvaniaPhysical environmentPhysiologicalPlasmaPlatelet ActivationProcessProductionRegulationResearchResearch Project GrantsResolutionRoleScanning Electron MicroscopySiteStrokeStructureStructure of jugular veinSystemTestingTherapeutic AgentsThrombinThrombosisThrombusTimeTissuesTrainingTranslatingTransmission Electron MicroscopyTransport ProcessUncertaintyUniversitiesWorkbaseclinically relevanthigh resolution imagingimprovedin vivoinstrumentmicroscopic imagingmulti-photonnanometernanometer resolutionnovelparticlepressurepreventreaction ratereconstructionresponsesimulationsuccesstherapy designthromboticvascular injury
项目摘要
Project summary
Thrombin is a critical element of the hemostatic/thrombotic response, as evidenced by the large number of
clinically relevant pro- and anti-coagulant therapies designed to regulate its generation or activity. Thrombin
regulation is not a purely biochemical matter, but rather it emerges from the interaction of the biochemical
cascade with the evolving physical microenvironment (i.e., platelet deposition). As such, in order to determine
how reaction rates of the coagulation cascade may be impacted inside of a hemostatic (or thrombotic) mass we
need to study the tightly-woven interaction between the biochemical reactions responsible for thrombin
generation and the physical environment in which they occur. Our primary objective is to answer a fundamental
question: can the narrow pores of a hemostatic mass operate as a ‘molecular barrier’ and terminate thrombin
generation? If so, this would represent an understudied mechanism mediated by platelets and/or fibrin, and the
structure they form following accumulation, at a site of injury. The hypothesized molecular barrier results from
the hindered movement of soluble species through the evolving hemostatic mass microenvironment. Hemostatic
masses are defined by a complex network of mesoscopic scale pores with dimensions of a few to tens of
nanometers, and as a result, biochemical reactions relevant to clotting occur in extremely confined spaces.
Previous studies explored the idea that the physical environment of a hemostatic plug may contribute to
regulating the hemostatic response, but an accurate knowledge of the microstructure of a hemostatic mass
remains elusive. Our proposed studies will address this bottleneck by combining novel volume imaging electron
microscopy methods of hemostatic masses with artificial intelligence methods to create anatomically realistic
domains for simulations of coagulation biochemistry. In Aim #1, in collaboration with Dr. Weisel (letter attached),
we will acquire sequential image stacks of hemostatic masses formed in vivo using correlative multi-photon
fluorescence and Focused Ion Beam Scanning Electron microscopy. In Aim #2, we employ artificial intelligence
methods to perform accurate image-driven 3D reconstruction of hemostatic mass microarchitectures, using the
image stacks generated in Aim #1. As part of a related research project, we have already acquired an initial set
of transmission electron microscopy images of hemostatic thrombi at single-platelet resolution to guide our initial
computational efforts. In Aim #3, we will use the reconstructions obtained to examine how the hemostatic mass
microarchitecture impedes molecular transport. We will evolve simulations to systematically evaluate how pore
size and molecule size interact to regulate molecular diffusion. Finally, we will ask whether limitations in
molecular transport through the hemostatic mass are responsible for the termination of thrombin production at a
local level. If confirmed, this mechanism will represent a fundamental shift in the way we understand the role of
platelet activation and accumulation, the hallmarks of hemostasis and thrombosis.
项目概要
大量凝血酶证明了凝血酶是止血/血栓反应的关键要素
临床相关的促凝血和抗凝血疗法,旨在调节凝血酶的生成或活性。
调节不是纯粹的生化物质,而是生化物质相互作用的结果。
与不断变化的物理微环境(即血小板沉积)级联,以确定。
我们如何影响止血(或血栓)团块内部的凝血级联反应速率
需要研究负责凝血酶的生化反应之间紧密交织的相互作用
我们的首要目标是回答一个基本问题。
问题:止血物质的窄孔能否作为“分子屏障”发挥作用并终止凝血酶
如果是这样,这将代表血小板和/或纤维蛋白介导的尚未研究的机制,以及
它们在受伤部位积累后形成的结构。
通过不断变化的止血微环境阻碍可溶性物质的运动。
质量由尺寸为几到几十的介观尺度孔隙的复杂网络定义。
纳米级,因此,与凝血相关的生化反应发生在极其有限的空间内。
先前的研究探讨了止血塞的物理环境可能有助于
调节止血反应,但准确了解止血块的微观结构
我们提出的研究将通过结合新型体积成像电子来解决这个瓶颈。
止血肿块的显微方法与人工智能方法创建解剖学上的真实感
在目标 #1 中,与 Weisel 博士合作(附信),
我们将使用相关多光子获取体内形成的止血团的连续图像堆栈
荧光和聚焦离子束扫描电子显微镜 在目标#2 中,我们采用了人工智能。
方法对止血块微结构进行精确的图像驱动 3D 重建,使用
在目标 #1 中生成的图像堆栈作为相关研究项目的一部分,我们已经获得了初始集。
单血小板分辨率的止血血栓的透射电子显微镜图像来指导我们的初步研究
在目标 #3 中,我们将使用获得的重建来检查止血质量如何。
我们将发展模拟来系统地评估孔隙如何阻碍分子传输。
最后,我们会问是否存在限制。
通过止血物质的分子运输负责终止凝血酶的产生
如果得到证实,这一机制将代表我们理解其作用的方式发生根本性转变。
血小板活化和积聚是止血和血栓形成的标志。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talid Sinno其他文献
Talid Sinno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Talid Sinno', 18)}}的其他基金
Platelet mass microarchitecture as a regulator of thrombin production
血小板质量微结构作为凝血酶产生的调节剂
- 批准号:
10460994 - 财政年份:2021
- 资助金额:
$ 23.66万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
- 批准号:
10715763 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别:
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
- 批准号:
10760947 - 财政年份:2023
- 资助金额:
$ 23.66万 - 项目类别: