Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
基本信息
- 批准号:10269003
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationActivities of Daily LivingAnimal ModelAwardBig DataBig Data MethodsBiologicalBlast InjuriesCategoriesCentral Nervous System DiseasesChronicClinicalClosed head injuriesCommon Data ElementComplexCortical ContusionsDataData CommonsData PoolingData ProvenanceData ScienceData SourcesDecelerationDiseaseFAIR principlesFamily suidaeFederal GovernmentFunctional disorderFundingFutureGenerationsGeneticGoalsGrantHealthcareHeterogeneityHigh PrevalenceHousingHumanImpairmentIncentivesInfrastructureIngestionInjuryKnowledgeKnowledge DiscoveryLaboratory ResearchLateralLinkLiquid substanceLiteratureMachine LearningMilitary PersonnelModelingModernizationMolecularMonkeysMotorMusNational Institute of Neurological Disorders and StrokeNervous System TraumaNeurobiologyNeurocognitionNeurologicNeurosciencesOutcomePatientsPatternPercussionPersonalityPersonsPopulationPositioning AttributePrincipal Component AnalysisProcessRattusRecoveryRecovery of FunctionReproducibilityResearchResearch PersonnelResearch Project GrantsRodentShapesSourceSyndromeSystemTaxonomyTestingTherapeuticTherapeutic EffectTimeTranslatingTranslationsTraumatic Brain InjuryTreatment EfficacyVertebral columnVeteransWell in selfanalytical toolbench-to-bedside translationbody systemcomputerized data processingcostdata dictionarydata exchangedata integrationdata repositorydata resourcedata reusedata sharingdigital object identifierdisabilityfluid percussion injuryheterogenous dataimprovedinnovationinsightmilitary veteranmultidimensional datanervous system disordernovelpre-clinicalprecision medicineproductivity lossrepositoryrestorationtherapeutic developmenttherapeutic evaluationtooltranslational potentialuser-friendly
项目摘要
Chronic traumatic brain injury (TBI) is one of the most prevalent neurological disorders in both military and
civilian populations, impacting up to 5.3 million people in the US and costing $76 billion in healthcare and loss-
of-productivity. Yet relatively little is known about the precise neurobiological features of chronic TBI leading to
dysfunction and disability. This lack of knowledge limits the reliability of therapeutic development in animal
models and limits translation across species and into human patients. Part of the problem is that chronic TBI is
intrinsically complex, involving heterogeneous damage to the most complex organ system. This results in a
multifaceted syndrome spanning across heterogeneous data sources and multiple scales of analysis. This
multi-scale heterogeneity makes chronic TBI difficult to understand using traditional analytical approaches that
focus on a single endpoint for testing therapeutic efficacy. Single endpoints reflect a small portion of a
complex system of changes that describe the holistic syndrome of chronic TBI. In this sense, complex chronic
TBI is fundamentally a ‘big-data’ problem requiring pooled information and analytics to evaluate reproducibility
in basic discovery and cross-species translation. The proposed project will develop novel applications of
cutting edge multidimensional analytics to integrate preclinical chronic TBI data on a large scale. The goal of
the proposed project is to develop an integrated workflow for preclinical discovery, reproducibility testing, and
translational discovery both within and across chronic TBI types. The project team is well-positioned to execute
this project given that with prior federal funding it built one of the largest multicenter, multispecies repositories
of neurotrauma data to-date, housing detailed multidimensional outcome data on nearly 4000 mice, rats, pigs,
and monkeys. The proposed VA merit award will expand these data with new data-donations collected from 5
preclinical TBI research laboratories across the US, including chronic (>1 month) TBI models of penetrating
injury, closed head injuries, repeated mild injuries, acceleration/ deceleration, lateral fluid percussion, and blast
injuries. The project will harmonize these existing data resources into a single data pool, enabling application
of recent innovations from data science to render complex multidimensional endpoint data into robust
syndromic patterns that can be visualized and explored by researchers in a user-friendly manner. The project
will accelerate data-driven-discovery, scientific reproducibility, hypothesis-generation, and ultimately precision
medicine for chronic TBI.
慢性创伤性脑损伤(TBI)是军事和军事领域最常见的神经系统疾病之一。
平民人口,影响了美国多达 530 万人,造成了 760 亿美元的医疗保健和损失——
然而,对于导致慢性 TBI 的确切神经生物学特征知之甚少。
这种知识的缺乏限制了动物治疗开发的可靠性。
模型并限制了跨物种和人类患者的转化,部分问题在于慢性 TBI 是一种慢性 TBI。
本质上很复杂,涉及对最复杂的器官系统的异质损伤,这导致了。
跨越异构数据源和多种分析尺度的多方面综合症。
多尺度异质性使得慢性 TBI 难以使用传统的分析方法来理解,
专注于测试治疗效果的单一终点 单一终点反映了一小部分。
复杂的变化系统描述了慢性 TBI 的整体综合征,从这个意义上说,复杂的慢性。
TBI 从根本上来说是一个“大数据”问题,需要汇总信息和分析来评估可重复性
拟议的项目将开发基础发现和跨物种翻译的新颖应用。
尖端的多维分析,大规模整合临床前慢性 TBI 数据。
拟议的项目是开发一个用于临床前发现、再现性测试和
项目团队有能力执行慢性 TBI 类型内部和跨类型的转化发现。
鉴于该项目在之前的联邦资助下建立了最大的多中心、多物种储存库之一
迄今为止的神经创伤数据,包含近 4000 只小鼠、大鼠、猪、
拟议的 VA 优异奖将通过从 5 个组织收集的新数据捐赠来扩展这些数据。
美国各地的临床前 TBI 研究实验室,包括穿透性慢性(>1 个月)TBI 模型
损伤、闭合性头部损伤、重复轻度损伤、加速/减速、侧面液体冲击和爆炸
该项目将把这些现有的数据资源整合到一个数据池中,以便于应用。
数据科学的最新创新将复杂的多维端点数据呈现为强大的
研究人员可以以用户友好的方式可视化和探索综合症模式。
将加速数据驱动的发现、科学的可重复性、假设的生成以及最终的精确度
治疗慢性 TBI 的药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM R FERGUSON其他文献
ADAM R FERGUSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM R FERGUSON', 18)}}的其他基金
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10276397 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10449363 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Enhancing the Pan-Neurotrauma Data Commons (PANORAUMA) to a complete open data science tool by FAIR APIs
通过 FAIR API 将泛神经创伤数据共享 (PANORAUMA) 增强为完整的开放数据科学工具
- 批准号:
10608657 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10649639 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
9742296 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Leveraging data-science for discovery in chronic TBI
利用数据科学发现慢性 TBI
- 批准号:
10066267 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Peptide Therapy for Corneal Wound Healing
开发用于角膜伤口愈合的肽疗法
- 批准号:
10484711 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Using functional readouts from engineering models of innervated skeletal muscle to assess the efficacy of CRISPR-based c9orf72 ALS gene therapies
使用受神经支配的骨骼肌工程模型的功能读数来评估基于 CRISPR 的 c9orf72 ALS 基因疗法的功效
- 批准号:
10653223 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The Cancer Proteome Atlas: an Integrated Bioinformatics Resource for Functional Cancer Proteomic Data
癌症蛋白质组图谱:功能性癌症蛋白质组数据的综合生物信息学资源
- 批准号:
10653202 - 财政年份:2022
- 资助金额:
-- - 项目类别: