Engineering Brain Cancer in a Dish: Hydrogel-based 3D in vitro Models for Pediatric Brain Tumor
在培养皿中改造脑癌:基于水凝胶的小儿脑肿瘤 3D 体外模型
基本信息
- 批准号:10284928
- 负责人:
- 金额:$ 3.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdherent CultureAdhesionsAdhesivesAdultAffectAnimal ModelAutomobile DrivingBiochemicalBiomedical EngineeringBiomimeticsBrainBrain NeoplasmsBrain StemCancer BiologyCancer ModelCell CommunicationCellsCessation of lifeChildChildhoodChildhood Brain NeoplasmClinicalCoculture TechniquesCollaborationsComplexCuesCustomDevelopmentDiffuse intrinsic pontine gliomaDisciplineDiseaseDoseDrug resistanceEngineeringEnvironmentExtracellular MatrixFacultyFutureGlioblastomaGoalsHistone DeacetylaseHistonesHydrogelsIn VitroIntegrinsLeadLigandsMalignant Childhood NeoplasmMalignant neoplasm of brainMentorshipModelingMolecularMusNeoplasmsOncogenicOutcomePathway interactionsPharmaceutical PreparationsPhenotypePhysiciansPlayPontine structurePositioning AttributeProteinsRNAReceptor CellReportingResistance developmentRoleScientistSignal TransductionSiteSolid NeoplasmSurvival RateTestingTherapeuticTimeTrainingTreatment outcomeTumor Cell InvasionWorkYanganticancer researchbasecancer cellcareer developmentcell behaviorcostdisease phenotypeeffective therapyefficacy validationimprovedimproved outcomein vitro Modelin vivoinhibitormaterials sciencemechanical signalmigrationmouse modelneoplastic cellnerve stem cellneurosurgerynovelnovel therapeutic interventionnovel therapeuticsreceptorresponsetherapeutic candidatetherapeutic targetthree-dimensional modelingtumor growthtumor microenvironment
项目摘要
Diffuse intrinsic pontine gliomas (DIPG) are a highly aggressive pediatric brain tumor of the ventral pons
(brain stem), with a five-year survival rate of less than 1% and a median survival of only 9 months [1,2]. While
significant improvement in survival has been achieved in treating other forms of pediatric cancer, survival rate
for DIPG has not changed in over three decades [1]. While the brain tumor niche itself is a 3D, multi-factorial
environment, previous attempts have relied on standard 2D monolayer culture or animal models to mimic the
disease phenotype. However, increasing evidence has shown that cancer cell behavior in 2D differs substantially
from the in vivo phenotype [3]; whereas animal models are costly, lengthy to produce, and often cumbersome
for mechanistic studies. Furthermore, previous studies were done almost exclusively with adult brain tumor cells,
whereas adult and pediatric brain tumors have been shown to demonstrate distinct phenotypes in their sites of
origin, clinical presentations and molecular mechanisms [4].
Through working at the interface of bioengineering, materials science, cancer biology, neurosurgery, and
animal models, the goals of this proposal are to develop hydrogels with optimized niche cues to support DIPG
proliferation and invasion in 3D, and to harness such in vitro model for elucidating the role of integrin receptors
and cell-cell interactions in driving DIPG progression. The efficacy of blocking specific integrin receptors for
inhibiting DIPG progression will be further validated in vivo using our established mouse models. I hypothesize
that blocking DIPG adhesion through specific integrin receptors would inhibit DIPG proliferation and invasion in
3D. Furthermore, there is a need to find and advance combinational therapeutic strategies since DIPG has been
shown to ultimately develop resistance even to promising single targeting regimes like HDAC inhibition [7,8]. I
hypothesize that blocking integrin receptor would synergize with HDAC inhibition to further improve treatment
outcome of DIPG by disrupting two distinct oncogenic pathways. I further hypothesize that 3D co-culture of
DIPG with neural progenitor cells (NPCs) in 3D would enhance DIPG invasion, a phenotype that mimics the in
vivo response. To test these hypotheses, I propose to: (1) Develop 3D hydrogels with brain-mimicking stiffness
and optimized adhesive ligands that support DIPG proliferation, invasion and drug responses in 3D; (2) Evaluate
the effects of blocking specific integrin receptors required for DIPG adhesion in inhibiting DIPG invasion using
our 3D hydrogels models, and validate the efficacy using a mouse DIPG model; and (3) Develop a 3D co-culture
model to recapitulate NPC-induced DIPG invasion, and identify key signals impacted by NPC/DIPG interactions
using RNA microarray. The outcomes of the proposed work would lead to the development of a bioengineered
3D in vitro model for DIPG with controlled cell-matrix and cell-cell interactions that mimics in vivo phenotype.
Under the mentorship of a team of basic and physician scientists, with complimentary expertise, I will gain
valuable interdisciplinary trainings and be uniquely positioned to carry out the proposed work.
弥漫性内在桥脑胶质瘤 (DIPG) 是一种高度侵袭性的脑桥腹侧儿童脑肿瘤
(脑干),五年生存率低于1%,中位生存期仅为9个月[1,2]。尽管
在治疗其他形式的儿科癌症时,生存率已取得显着改善,生存率
DIPG 三十多年来没有改变[1]。虽然脑肿瘤生态位本身是一个 3D 的、多因素的
环境,之前的尝试依赖于标准的 2D 单层培养或动物模型来模仿
疾病表型。然而,越来越多的证据表明,二维癌细胞的行为存在很大差异
来自体内表型 [3];而动物模型成本高昂,制作时间长,而且通常很麻烦
用于机理研究。此外,之前的研究几乎都是针对成人脑肿瘤细胞进行的,
而成人和儿童脑肿瘤已被证明在其部位表现出不同的表型
起源、临床表现和分子机制[4]。
通过在生物工程、材料科学、癌症生物学、神经外科和
动物模型,该提案的目标是开发具有优化利基线索的水凝胶以支持 DIPG
3D 中的增殖和侵袭,并利用此类体外模型来阐明整合素受体的作用
以及驱动 DIPG 进展的细胞间相互作用。阻断特定整合素受体的功效
抑制 DIPG 进展将使用我们建立的小鼠模型在体内进一步验证。我假设
通过特定整合素受体阻断 DIPG 粘附将抑制 DIPG 增殖和侵袭
3D。此外,由于 DIPG 已被广泛应用,因此需要寻找和推进联合治疗策略。
事实证明,即使是对 HDAC 抑制等有希望的单一靶向方案,最终也会产生耐药性 [7,8]。我
假设阻断整合素受体将与 HDAC 抑制协同作用以进一步改善治疗
DIPG 的结果是通过破坏两种不同的致癌途径。我进一步假设 3D 共培养
3D 状态下的 DIPG 与神经祖细胞 (NPC) 会增强 DIPG 侵袭,这是一种模仿体内神经祖细胞 (NPC) 的表型
体内反应。为了检验这些假设,我建议:(1)开发具有模拟大脑硬度的 3D 水凝胶
以及支持 DIPG 增殖、侵袭和 3D 药物反应的优化粘附配体; (2) 评估
阻断 DIPG 粘附所需的特定整合素受体在抑制 DIPG 侵袭中的作用
我们的 3D 水凝胶模型,并使用小鼠 DIPG 模型验证功效; (3) 开发 3D 共培养
模型可重现 NPC 诱导的 DIPG 入侵,并识别受 NPC/DIPG 相互作用影响的关键信号
使用RNA微阵列。拟议工作的成果将导致生物工程的发展
DIPG 3D 体外模型,具有模拟体内表型的受控细胞-基质和细胞-细胞相互作用。
在基础科学家和医学科学家团队的指导下,在专业知识的补充下,我将获得
有价值的跨学科培训,并具有独特的优势来开展拟议的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sauradeep Sinha其他文献
Sauradeep Sinha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sauradeep Sinha', 18)}}的其他基金
Engineering Brain Cancer in a Dish: Hydrogel-based 3D in vitro Models for Pediatric Brain Tumor
在培养皿中改造脑癌:基于水凝胶的小儿脑肿瘤 3D 体外模型
- 批准号:
10539308 - 财政年份:2021
- 资助金额:
$ 3.98万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 3.98万 - 项目类别: