Computational approaches for comparative regulatory genomics to decipher long-range gene regulation
比较调控基因组学的计算方法来破译远程基因调控
基本信息
- 批准号:10208923
- 负责人:
- 金额:$ 33.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAnimal ModelAwarenessBasic ScienceBindingBiologicalBiological MarkersCRISPR/Cas technologyCardiovascular DiseasesCell LineCell modelCellsChromatinComparative StudyComplexComputing MethodologiesDataData SetDevelopmentDiabetes MellitusDimensionsDiseaseDistalElementsEndothelial CellsEnhancersGene ExpressionGene Expression RegulationGenesGenomeGenomic SegmentGenomicsGoalsGraphHi-CHumanIceIndividualJointsLinkMachine LearningMalignant NeoplasmsMeasurementMeasuresMethodsModelingObesityPathway interactionsPerformancePhenotypePhylogenetic AnalysisPlayProcessProtocols documentationPsychological TransferPublishingRegulationRegulator GenesRegulatory ElementResearch PersonnelResolutionResourcesRoleSignal TransductionSoftware ToolsStatistical ModelsTechnologyTestingTissue-Specific Gene ExpressionTrainingTranslational ResearchUntranslated RNAVariantbasecell typechromosome conformation capturecomparativecostepigenomeepigenomicsexperimental studyfollow-upgenomic locushistone modificationhuman diseaseimprovedlearning classifiermarkov modelmulti-task learningmultiple datasetsmultitasknovelpromotertooltraittranscription factor
项目摘要
Project Abstract/Summary
The three-dimensional organization of the genome is a major player in long-range gene regulation, where
regulatory elements such as enhancers affect the expression of a gene hundreds of kilobases away. Changes
in three-dimensional organization are associated with tissue-specific gene expression and have been
implicated in several human diseases including cancer, diabetes and obesity. Advances in chromosome
conformation capture (3C) technologies have expanded our repertoire of long-range interactions between
enhancers and promoters in model cell lines and have shown that such interactions are established through a
complex interplay of chromatin state, transcription factor binding and three-dimensional proximity of genomic
regions. However, our current understanding of the dynamics of long-range gene regulation is limited, both
across different cell types as well as across different species. This is because of the absence of such datasets
in most species and cell types, lack of systematic methods to predict and interpret these interactions, and due
to limited approaches to compare both the regions and their interactions across different cell types and
especially across species. The overarching goals of this proposal are to develop novel computational
methods to jointly identify candidate regulatory elements in multiple species and predict their long-
range interactions in new cell types and species where high-throughput 3C datasets are not available
or difficult to obtain. In Aim 1, we will develop a phylogenetically aware method of jointly identifying
regulatory elements such as enhancers in multiple species. Aim 2 will develop multi-task and transfer learning
approaches to predict interactions in new species and cell types by integrating available high-throughput 3C
datasets from multiple cell types and 3C platforms. In Aim 3, we will collect a novel multi-species chromatin
mark dataset in species-specific endothelial cells to enable a systematic study of long-range gene regulation
dynamics. We will apply our computational approaches developed in Aims 1 and 2 on this multi-species
epigenomic dataset to identify different regulatory elements and predict long-range interactions in multiple
species. We will develop rigorous computational measures to evaluate the quality of predictions from our novel
methods and the improvements compared to existing methods based on published 3C datasets. We will further
experimentally validate predicted interactions using Capture-HiC in multiple species and using CRISPR/Cas9
experiments. We will examine individual and groups of interactions to identify species-specific, and clade-
specific interactions and interpret the corresponding genes in the context of known pathways and curated gene
sets associated with cardiovascular diseases. Our methods will be widely applicable to dissect long-range
gene regulation in complex phenotypes including diseases. Software tools, resources, original data and
experimental protocols developed by this project will be made publicly available.
项目摘要/总结
基因组的三维组织是远程基因调控的主要参与者,其中
增强子等调控元件影响数百个碱基外的基因表达。变化
三维组织中的基因与组织特异性基因表达相关,并且已被证实
与多种人类疾病有关,包括癌症、糖尿病和肥胖症。染色体的进展
构象捕获(3C)技术扩展了我们之间的长距离相互作用的能力
模型细胞系中的增强子和启动子,并表明这种相互作用是通过
染色质状态、转录因子结合和基因组三维邻近性之间复杂的相互作用
地区。然而,我们目前对远程基因调控动态的理解是有限的,无论是
跨越不同的细胞类型以及不同的物种。这是因为缺乏此类数据集
在大多数物种和细胞类型中,缺乏系统方法来预测和解释这些相互作用,并且由于
比较不同细胞类型的区域及其相互作用的方法有限,
尤其是跨物种。该提案的总体目标是开发新颖的计算
联合识别多个物种中候选调控元件并预测其长期作用的方法
无法获得高通量 3C 数据集的新细胞类型和物种中的一系列相互作用
或难以获得。在目标 1 中,我们将开发一种系统发育感知方法来联合识别
调节元件,例如多个物种的增强子。目标 2 将开发多任务和迁移学习
通过整合可用的高通量 3C 来预测新物种和细胞类型中相互作用的方法
来自多种细胞类型和 3C 平台的数据集。在目标 3 中,我们将收集一种新型的多物种染色质
标记物种特异性内皮细胞中的数据集,以实现远程基因调控的系统研究
动力学。我们将在目标 1 和 2 中开发的计算方法应用于这种多物种
表观基因组数据集,用于识别不同的调控元件并预测多个中的远程相互作用
物种。我们将制定严格的计算措施来评估我们的小说的预测质量
方法以及与基于已发布的 3C 数据集的现有方法相比的改进。我们将进一步
使用 Capture-HiC 在多个物种中并使用 CRISPR/Cas9 进行实验验证预测的相互作用
实验。我们将检查个体和群体的相互作用,以确定物种特异性和进化枝
特定的相互作用并在已知途径和策划基因的背景下解释相应的基因
与心血管疾病相关的组。我们的方法将广泛适用于解剖远程
包括疾病在内的复杂表型的基因调控。软件工具、资源、原始数据和
该项目开发的实验方案将公开。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Competition between transcription and loop extrusion modulates promoter and enhancer dynamics.
转录和环挤出之间的竞争调节启动子和增强子的动态。
- DOI:
- 发表时间:2023-08-16
- 期刊:
- 影响因子:0
- 作者:Sexton, Tom;Platania, Angeliki;Erb, Cathie;Barbieri, Mariano;Molcrette, Bastien;Grandgirard, Erwan;de Kort, Marit;Meabum, Karen;Taylor, Tiegh;Shchuka, Virlana;Kocanova, Silvia;Oliveira, Guilherme;Mitchell, Jennifer;Soutoglou, Evi;Lenstra, Ti
- 通讯作者:Lenstra, Ti
In silico prediction of high-resolution Hi-C interaction matrices.
高分辨率 Hi-C 相互作用矩阵的计算机预测。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:16.6
- 作者:Zhang, Shilu;Chasman, Deborah;Knaack, Sara;Roy, Sushmita
- 通讯作者:Roy, Sushmita
Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the Sox2 locus.
转录调节和染色质结构维护是 Sox2 基因座的解耦功能。
- DOI:
- 发表时间:2022-06-01
- 期刊:
- 影响因子:10.5
- 作者:Taylor, Tiegh;Sikorska, Natalia;Shchuka, Virlana M;Chahar, Sanjay;Ji, Chenfan;Macpherson, Neil N;Moorthy, Sakthi D;de Kort, Marit A C;Mullany, Shanelle;Khader, Nawrah;Gillespie, Zoe E;Langroudi, Lida;Tobias, Ian C;Lenstra, Tineke L;Mitchell
- 通讯作者:Mitchell
Enabling Studies of Genome-Scale Regulatory Network Evolution in Large Phylogenies with MRTLE.
利用 MRTLE 实现大系统发育中基因组规模调控网络进化的研究。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Shilu;Knaack, Sara;Roy, Sushmita
- 通讯作者:Roy, Sushmita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sushmita Roy其他文献
Sushmita Roy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sushmita Roy', 18)}}的其他基金
Leveraging multi-species single cell omic datasets to study the evolution of cell type-specific gene regulatory networks
利用多物种单细胞组学数据集研究细胞类型特异性基因调控网络的进化
- 批准号:
10710055 - 财政年份:2022
- 资助金额:
$ 33.29万 - 项目类别:
Defining gene regulatory networks controlling cell fate
定义控制细胞命运的基因调控网络
- 批准号:
10669280 - 财政年份:2022
- 资助金额:
$ 33.29万 - 项目类别:
Leveraging multi-species single cell omic datasets to study the evolution of cell type-specific gene regulatory networks
利用多物种单细胞组学数据集研究细胞类型特异性基因调控网络的进化
- 批准号:
10595349 - 财政年份:2022
- 资助金额:
$ 33.29万 - 项目类别:
Defining gene regulatory networks controlling cell fate
定义控制细胞命运的基因调控网络
- 批准号:
10530982 - 财政年份:2022
- 资助金额:
$ 33.29万 - 项目类别:
Computational Inference of Regulatory Network Dynamics on Cell Lineages
细胞谱系调控网络动力学的计算推断
- 批准号:
9979901 - 财政年份:2016
- 资助金额:
$ 33.29万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 33.29万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别: