Genetic and Pharmacological Manipulation of KSR in KRAS-driven Cancer
KSR 在 KRAS 驱动的癌症中的遗传和药理学操作
基本信息
- 批准号:10207543
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-02 至 2022-07-01
- 项目状态:已结题
- 来源:
- 关键词:A549AdenocarcinomaAffectAffinityAftercareBRAF geneBindingBinding SitesBiochemicalBiological AssayCancer PatientCancer cell lineCell LineCell SurvivalCellsCessation of lifeChemicalsClinicConsequentialismDataDependenceDevelopmentDiseaseExhibitsFeedbackFutureGatekeepingGeneticGenetic studyGoalsGrowthHomologous GeneInvestigationKRAS oncogenesisKRAS2 geneKSR geneLeadLengthLentivirus VectorLibrariesLinkMEKsMalignant NeoplasmsMediatingMedicineMethodsMitogen-Activated Protein Kinase InhibitorMitogen-Activated Protein KinasesMitogensMutationOncogenicPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhosphorylationPhosphotransferasesPhysiciansPolyubiquitinationPositive Test ResultProtacProtein FamilyProteinsProteolysisRas InhibitorRas Signaling PathwayResistanceScaffolding ProteinScientistSerineSignal PathwaySignal TransductionStructureSynthesis ChemistryTestingTherapeuticTrainingTransfectionUbiquitinationValidationWorkanalogassay developmentbiochemical toolscancer celldesigndriver mutationdrug discoveryenzyme activityexperimental studyimprovedin vivoinducible gene expressioninhibitor/antagonistknock-downmultiplex assaymutantnew therapeutic targetnext generationnovelnovel strategiesoverexpressionpreventprotein protein interactionrecruitscaffoldscreeningskillssmall moleculesuccesssynergismtherapeutic developmenttooltumorigenesisubiquitin-protein ligase
项目摘要
Project Summary: KRAS mutations are drivers of oncogenesis, and historically have been considered
“undruggable.” Consequentially, therapeutic approaches have focused on downstream effectors of the
mitogen-activated protein kinase (MAPK) pathway, including RAF, MEK, and ERK–though no approach has
led to an effective drug for KRAS-driven disease. However, genetic studies strongly support that the MAPK
signaling pathway is a critical dependency in KRAS-mutant cancers; so why do current MAPK drugs fail?
Recent studies suggest that these drugs are effective inhibitors of MAPK enzyme activity, yet fail due to
feedback mechanisms that rely on protein-protein interactions (PPIs) to maintain MAPK signaling even in the
presence of drug. My overarching hypothesis is that current MAPK inhibitors are limited by their inability to
effectively regulate critical PPIs among MAPK components. To test this hypothesis, I will alter critical PPIs by
modulating a MAPK scaffold termed Kinase Suppresor of Ras (KSR). In contrast to previous MAPK targets,
KSR is a pseudokinase that lacks catalytic activity, but serves as a scaffold protein to promote RAF and MEK
binding. Our group showed that a lead compound termed APS-2-79 binds to KSR2 at the ATP binding site
and synergizes with MEK inhibitors (MEKi) in KRAS-driven cell lines by impeding KSR’s interaction with RAF.
While useful as a tool for biochemical studies, APS-2-79 has several limitations including modest affinity and
selectivity for KSR. Moreover, the mechanism of KSR inhibitor (KSRi) synergy with MEKi in KRAS mutant cell
lines is not known, and may be the consequence of off target kinase inhibition instead of direct KSR targeting.
To investigate the mechanism of KSRi synergy with MEK inhibitors, I aim to test the dependence of
KSRi synergy in KRAS mutant cells on KSR using genetic tools. I hypothesize that the synergy observed
between MEKi and KSRi in KRAS mutant cells is dependent on the availability of KSR’s ATP-binding pocket.
To test this hypothesis, I will use lentiviral vectors to overexpress KSR, +/- mutations in the ATP binding pocket
known to prevent compound binding. To further explore the importance of KSR in mediating RAS-MAPK
signaling, I also aim to induce targeted KSR degradation with small-molecule PROteolysis TArgeting
Chimeras (PROTACs) These small molecule tools simultaneously bind their protein targets and E3 ubiquitin
ligases, allowing for ubiquitination of the target and downstream proteolysis. I hypothesize that PROTAC
mediated KSR1 degradation will mimic genetic deletion studies supporting the importance of KSR1 for
oncogenic KRAS. My aims outline genetic and pharmacological approaches to investigate KSR inactivation as
a mechanism to exploit crucial PPIs within the KRAS-driven MAPK signaling pathway. Critical to this study are
the development of potent and specific next-generation KSRi analogs and precise genetic tools for target
validation. Ultimately this training proposal nurtures skills in synthetic chemistry, assay development, drug
discovery, and target validation, which will be broadly applicable to my future goals as a physician scientist.
项目摘要:KRAS 突变是肿瘤发生的驱动因素,历史上一直被认为
因此,治疗方法集中于下游效应器。
丝裂原激活蛋白激酶 (MAPK) 通路,包括 RAF、MEK 和 ERK——尽管目前尚无方法
导致了一种治疗 KRAS 驱动疾病的有效药物,然而,遗传学研究强烈支持 MAPK。
信号通路是 KRAS 突变癌症的关键依赖性;那么为什么当前的 MAPK 药物会失败呢?
最近的研究表明,这些药物是 MAPK 酶活性的有效抑制剂,但由于以下原因而失败
依赖蛋白质-蛋白质相互作用 (PPI) 的反馈机制即使在
我的总体假设是,目前的 MAPK 抑制剂无法发挥作用。
有效调节 MAPK 成分中的关键 PPI 为了检验这一假设,我将通过以下方式改变关键 PPI。
调节称为 Ras 激酶抑制剂 (KSR) 的 MAPK 支架与之前的 MAPK 靶标相比,
KSR是一种假激酶,缺乏催化活性,但作为支架蛋白促进RAF和MEK
我们的小组表明,一种名为 APS-2-79 的先导化合物在 ATP 结合位点与 KSR2 结合。
并通过阻止 KSR 与 RAF 的相互作用,与 KRAS 驱动的细胞系中的 MEK 抑制剂 (MEKi) 产生协同作用。
虽然 APS-2-79 作为生化研究的工具很有用,但它有一些局限性,包括亲和力适中和
此外,KSR 抑制剂 (KSRi) 与 MEKi 在 KRAS 突变细胞中协同作用的机制。
线是未知的,并且可能是脱靶激酶抑制而不是直接 KSR 靶向的结果。
为了研究 KSRi 与 MEK 抑制剂协同作用的机制,我的目的是测试
使用遗传工具在 KRAS 突变细胞中对 KSR 产生 KSRi 协同作用。
KRAS 突变细胞中 MEKi 和 KSRi 之间的差异取决于 KSR ATP 结合袋的可用性。
为了检验这个假设,我将使用慢病毒载体过表达 KSR,ATP 结合袋中的 +/- 突变
已知可防止化合物结合,以进一步探讨 KSR 在介导 RAS-MAPK 中的重要性。
信号传导,我还旨在通过小分子蛋白质水解靶向诱导 KSR 降解
嵌合体 (PROTAC) 这些小分子工具同时结合其蛋白质靶点和 E3 泛素
连接酶,允许靶标泛素化和下游蛋白水解。
介导的 KSR1 降解将模仿基因缺失研究,支持 KSR1 对
我的目标概述了研究 KSR 失活的遗传和药理学方法:
在 KRAS 驱动的 MAPK 信号通路中利用关键 PPI 的机制对本研究至关重要。
开发有效且特异的下一代 KSRi 类似物和针对目标的精确遗传工具
最终,该培训计划培养了合成化学、分析开发、药物方面的技能。
发现和目标验证,这将广泛适用于我作为一名医师科学家的未来目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Real其他文献
Alexander Real的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
PARP1介导DNA损伤修复调控雄激素受体影响前列腺癌放疗敏感性的机制研究
- 批准号:82303674
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRAF6/Caveolin-1/p62功能轴介导高自噬水平CAFs与肿瘤细胞形成“代谢耦连”关系影响胰腺癌侵袭转移的机制研究
- 批准号:82372964
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
探索间质机械力通过影响SMAD4/JNK/PIN1功能轴对胰腺癌糖代谢重编程的调控机制
- 批准号:82372906
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SUV39H2通过铁死亡影响乳腺癌转移的作用及机制研究
- 批准号:82303121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学研究STAT3调控CKMT2和CD36-FABP4影响脂肪细胞参与乳腺癌细胞磷酸肌酸合成的耐药代谢重编程
- 批准号:82360604
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Antitumor potential of AvFc lectibody in non-small cell lung cancer
AvFc 凝集体在非小细胞肺癌中的抗肿瘤潜力
- 批准号:
10717195 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Novel roles of STAT2 and IFN-I in tumorigenesis and responses to therapy
STAT2 和 IFN-I 在肿瘤发生和治疗反应中的新作用
- 批准号:
10493938 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Novel roles of STAT2 and IFN-I in tumorigenesis and responses to therapy
STAT2 和 IFN-I 在肿瘤发生和治疗反应中的新作用
- 批准号:
10704228 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Novel roles of STAT2 and IFN-I in tumorigenesis and responses to therapy
STAT2 和 IFN-I 在肿瘤发生和治疗反应中的新作用
- 批准号:
10704228 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别: