High-resolution localization of the hair cell mechanotransduction channel components by immunogold-scanning electronic microscopy
通过免疫金扫描电子显微镜高分辨率定位毛细胞机械转导通道成分
基本信息
- 批准号:10196092
- 负责人:
- 金额:$ 23.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Actin-Binding ProteinAddressAdoptedAnimalsAntibodiesApicalAreaBindingCell AdhesionCell membraneCharacteristicsCochleaCommunitiesComplexConsumptionDataDehydrationDevelopmentDevelopmental BiologyDiseaseEPS8 geneElectron MicroscopeElectron MicroscopyEpitopesExtracellular ProteinGenesGoalsGoldHairHair CellsHumanImageImaging TechniquesIn VitroIntegral Membrane ProteinIon ChannelKnock-in MouseLabelLabyrinthLinkLipidsLocationMaintenanceMapsMeasuresMembraneMembrane ProteinsMethodsMicroscopicMicroscopyModelingMolecularMusOrganellesOuter Hair CellsPathologyPhysiologicalPositioning AttributePreparationProblem SolvingProteinsProtocols documentationResearchResolutionRoleSamplingScanningScanning Electron MicroscopySeminalSignal TransductionSiteSliceStructureSurfaceTechniquesTestingTimeTransducersWorkaxon guidancebaseciliopathycold temperaturedeafnessexperimental studyextracellularhair cell regenerationhearing impairmentimaging approachmechanotransductionmutantnanofilamentnanoscalenovel strategiesplanar cell polaritypostnatalpreservationprotein distributionprotein protein interactionresearch studysample fixationsoundtooltransmission process
项目摘要
SUMMARY
Our long-term goal is to understand at the molecular level how hair cell mechanotransduction works and why it
fails in different types of hearing loss. Our strategy is to study genes that cause hearing loss in humans by
modeling them in mice. A critical aspect of this research relies on localizing deafness proteins at cellular and
subcellular levels in the inner ear. In the hair cell mechanosensory organelle, known as the hair bundle, high-
resolution localization of proteins provides critical information for defining their functions. For example, the
mechanotransduction machinery itself is organized asymmetrically along the tip link ends. Tip link
nanofilaments transmit the deflection force from taller stereocilia to the tips of paired, shorter stereocilia in
order to gate the channel. Therefore, a protein localized at the upper tip-link insertion complex indicates a
potential role in tip-link tension maintenance. In contrast, a protein localized at the lower tip-link insertion site
suggests a role with the mechano-electrical transducer (MET) channel complex.
High-resolution protein localization is routinely achieved by immunogold-labeling of samples, which are
subsequently embedded, sliced, and imaged using transmission electron microscopes. However, this
approach is massively time-consuming and not suited for extensive quantification. An alternative approach
images the surface of immunogold-labeled samples using scanning electron microscopy (SEM), however this
method is limited to investigating extracellular proteins. As many proteins of the hair bundle are internal but in
the vicinity of the membrane, we hypothesized that immunogold-SEM could be adapted to localize these
internal proteins. Such a technical improvement would allow localization of protein distribution at the nanoscale
from large numbers of hair cells, resulting in increased sample numbers for stronger quantification.
In Specific Aim 1 of this proposal, we will finalize our immunogold-SEM protocols dedicated either to
localizing internal proteins beneath the stereocilia membrane or proteins integral to the stereociliary
membrane. Our preliminary data show that the internal actin-binding protein, EPS8, maintains its
characteristic enrichment at the tip of the tallest stereocilia. At the same time, the hair bundle structure and its
links are preserved. To test our membrane protein method, we will localize transmembrane protein PMCA2a.
In Specific Aim 2, we will capitalize on these immunogold-SEM protocols to locate the
mechanotransduction channels at nanoscale resolution. The protein distributions of TMC1, TMC2
(participating in the pore), and TMIE (required for TMCs activity), will be mapped at the tip of transducing
stereocilia. The MET channel location, expected to be at the intersection between the TMCs and TMIE
distributions, and its distance to the tip link will be measured. Overall, we expect to provide not only the first
nanoscale map of the MET channel components, but also a seminal technique valuable to many other
research fields such as cell adhesion, planar cell polarity, ciliopathies, and axon guidance among others.
概括
我们的长期目标是在分子水平上了解毛细胞机械转导的工作原理及其原因
不同类型的听力损失都失败。我们的策略是研究导致人类听力损失的基因
在小鼠中对它们进行建模。这项研究的一个关键方面依赖于将耳聋蛋白定位在细胞和
内耳的亚细胞水平。在毛细胞机械感觉细胞器(称为发束)中,高
蛋白质的分辨率定位为定义其功能提供了关键信息。例如,
机械传导机械本身沿着尖端连杆末端不对称地组织。提示链接
纳米丝将偏转力从较高的静纤毛传递到成对的、较短的静纤毛的尖端
命令来控制通道。因此,位于上部尖端连接插入复合物的蛋白质表明
在尖端连杆张力维持中的潜在作用。相反,位于下部尖端连接插入位点的蛋白质
表明与机电换能器(MET)通道复合体的作用。
高分辨率蛋白质定位通常通过样品的免疫金标记来实现,这些样品是
随后使用透射电子显微镜进行嵌入、切片和成像。然而,这
该方法非常耗时且不适合广泛量化。另一种方法
使用扫描电子显微镜 (SEM) 对免疫金标记样品的表面进行成像,但是这
该方法仅限于研究细胞外蛋白质。由于发束的许多蛋白质都在内部,但在
在膜附近,我们假设免疫金-SEM 可以适用于定位这些
内部蛋白质。这种技术改进将允许蛋白质分布在纳米尺度上定位
来自大量毛细胞,导致样本数量增加以进行更强的定量。
在本提案的具体目标 1 中,我们将最终确定免疫金-SEM 协议,专用于
定位静纤毛膜下方的内部蛋白质或静纤毛不可或缺的蛋白质
膜。我们的初步数据表明,内部肌动蛋白结合蛋白 EPS8 保持其
最高静纤毛尖端的特征富集。同时,发束结构及其
链接被保留。为了测试我们的膜蛋白方法,我们将定位跨膜蛋白 PMCA2a。
在具体目标 2 中,我们将利用这些免疫金-SEM 协议来定位
纳米级分辨率的力传导通道。 TMC1、TMC2的蛋白分布
(参与孔)和 TMIE(TMC 活动所需)将被映射在转导尖端
静纤毛。 MET 通道位置,预计位于 TMC 和 TMIE 的交叉点
分布,并将测量其到尖端链接的距离。总的来说,我们期望不仅提供第一个
MET 通道成分的纳米级图,也是对许多其他人有价值的开创性技术
研究领域包括细胞粘附、平面细胞极性、纤毛病和轴突引导等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Grillet其他文献
Nicolas Grillet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Grillet', 18)}}的其他基金
Molecular genetics of human age-related hearing loss
人类年龄相关性听力损失的分子遗传学
- 批准号:
10637870 - 财政年份:2023
- 资助金额:
$ 23.71万 - 项目类别:
High-resolution localization of the hair cell mechanotransduction channel components by immunogold-scanning electronic microscopy
通过免疫金扫描电子显微镜高分辨率定位毛细胞机械转导通道成分
- 批准号:
10355541 - 财政年份:2021
- 资助金额:
$ 23.71万 - 项目类别:
Function of LOXHD1 in mechanosensory hair cells
LOXHD1 在机械感觉毛细胞中的功能
- 批准号:
9756363 - 财政年份:2018
- 资助金额:
$ 23.71万 - 项目类别:
Function of LOXHD1 in mechanosensory hair cells
LOXHD1 在机械感觉毛细胞中的功能
- 批准号:
10238112 - 财政年份:2018
- 资助金额:
$ 23.71万 - 项目类别:
Function of LOXHD1 in mechanosensory hair cells
LOXHD1 在机械感觉毛细胞中的功能
- 批准号:
10468742 - 财政年份:2018
- 资助金额:
$ 23.71万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 23.71万 - 项目类别:
High-resolution localization of the hair cell mechanotransduction channel components by immunogold-scanning electronic microscopy
通过免疫金扫描电子显微镜高分辨率定位毛细胞机械转导通道成分
- 批准号:
10355541 - 财政年份:2021
- 资助金额:
$ 23.71万 - 项目类别:
Dynamic Regulation of the Actin Filament Barbed End
肌动蛋白丝刺端的动态调节
- 批准号:
10590667 - 财政年份:2020
- 资助金额:
$ 23.71万 - 项目类别: