Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
基本信息
- 批准号:10196486
- 负责人:
- 金额:$ 25.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesionsAreaAtomic Force MicroscopyBiologicalCell LineCell membraneCell physiologyCell surfaceCellsCholesterolConfocal MicroscopyConsensusCytoskeletonDNADNA LibraryDyesElasticityEndocytosisEngineeringEntropyEquilibriumEquipmentErythrocytesExocytosisFluorescence MicroscopyFluorescence Resonance Energy TransferGeometryHeterogeneityKnowledgeLeadLibrariesLipidsLiposomesLiquid substanceMeasurementMeasuresMembraneMembrane PotentialsMethodsModelingModulusMolecular ProbesMonitorMorphogenesisNanostructuresOligonucleotidesOpticsPharmaceutical PreparationsPhysiologicalPlayPropertyRoleSecretory CellSignal TransductionSingle-Stranded DNASlideSpectrinStretchingSurfaceTertiary Protein StructureTestingThickThinnessTimeTransmembrane Domainbasecell motilitydesignfluorescence imagingimaging modalitylaser tweezermechanical propertiesmillisecondnovel strategiesoptical trapsresponseself assemblysensorsmall moleculesuccesstool
项目摘要
Project Summary
Many cellular processes, such as spreading, motility, division, and morphogenesis generate membrane tension
gradients. Such gradients drive membrane flows, which relax the initial gradients. In addition, quiescent cells
maintain a constant surface area and a relatively stable membrane tension, 𝜎, by balancing the rates at which
membrane is added (via exocytosis) and removed (via endocytosis) to and from the cell surface. Changes in 𝜎
have been proposed to provide rapid, long-range cellular signaling. Yet, how the plasma membrane flows and
how gradients of 𝜎 relax are very poorly understood, with estimates of membrane tension equilibration times in
cells ranging from milliseconds to tens of minutes. One of the major reasons underlying this dearth of
knowledge is the lack of suitable methods for measuring membrane tension changes in live cells. In the past,
two classes of membrane tension measurements have been developed, but both have severe limitations. The
first class is based on changes in optical properties of small molecules. These sensors probe local properties of
cell membranes. Due to large heterogeneities in biological membranes, and potential interactions of the probes
with various membrane components, correlating 𝜎 with the local properties probed by these small molecule
sensors is not straightforward. The second approach relies on pulling a thin membrane tether from the cell
surface and measuring the tether force using optical trapping or atomic force microscopy. The tether force is
related to the in-line membrane tension, membrane bending modulus, and the adhesion energy between the
plasma membrane and the cytoskeleton. This approach allows a "true" membrane tension to be measured, but
requires specialized equipment, is very difficult to implement when cells undergo physiological changes when
tension gradients are most likely to arise, and only provides a local measurement. Thus, despite the urgent
need, there are no direct and convenient probes to quantify membrane tension gradients during cellular
processes. We propose to close this gap by developing a radically new class of membrane tension
sensors based on DNA-based self-assembly of an elastic network over cell surfaces, called
LEMONADE, for Lego-like membrane tension analyzer based on self-assembled DNA elastic networks.
We aim to 1) develop a library of DNA tiles and connector-springs that self-assemble on cell
surfaces into a network with tunable properties. A variety of DNA tile and connector-spring designs
will be generated and optimized for self-assembly on membranes. The connectivity and elasticity of the
network will be tunable by substitution of components with different properties. Expansion or contraction of
the network due to changes in membrane area will be detected using FRET dye pairs located on the connector-
spring modules. 2) Characterize the response of the DNA-based membrane tension sensor to
controlled membrane tension perturbations in various cells. We will use giant liposomes, red blood
cells, and adhering cells to calibrate the response of LEMONADE to controlled changes in membrane tension.
项目概要
许多细胞过程,例如扩散、运动、分裂和形态发生都会产生膜张力
这种梯度驱动膜流,从而放松初始梯度。
通过平衡速率来保持恒定的表面积和相对稳定的膜张力𝜎
膜在细胞表面添加(通过胞吐作用)和去除(通过内吞作用)。
已被提议提供快速、远距离的细胞信号传导。然而,质膜如何流动和如何流动。
人们对 𝜎 松弛的梯度如何了解知之甚少,膜张力平衡时间的估计为
细胞周期从几毫秒到几十分钟不等,这是造成这种深度的主要原因之一。
过去,缺乏测量活细胞膜张力变化的合适方法。
已经开发出两类膜张力测量方法,但两者都有严重的局限性。
第一类是基于小分子光学特性的变化,这些传感器探测小分子的局部特性。
由于生物膜的巨大异质性以及探针之间潜在的相互作用。
与各种膜成分,将 𝜎 与这些小分子探测到的局部特性相关联
传感器并不简单。第二种方法依赖于从细胞中拉出薄膜系绳。
表面并使用光学捕获或原子力显微镜测量系链力。
与在线膜张力、膜弯曲模量以及膜之间的粘附能有关
这种方法可以测量“真实”的膜张力,但是
需要专门的设备,当细胞发生生理变化时很难实现
张力梯度最有可能出现,并且仅提供局部测量,尽管紧急。
需要,没有直接和方便的探针来量化细胞过程中的膜张力梯度
我们建议通过开发一种全新的膜张力来缩小这一差距。
基于 DNA 的细胞表面弹性网络自组装传感器,称为
LEMONADE,基于自组装 DNA 弹性网络的乐高式膜张力分析仪。
我们的目标是 1) 开发一个在细胞上自组装的 DNA 瓦片和连接器弹簧库
表面形成具有可调特性的网络。
将生成并优化膜上的自组装的连接性和弹性。
网络可以通过替换具有不同属性的组件来进行调整。
由于膜面积变化而产生的网络将使用位于连接器上的 FRET 染料对进行检测 -
2) 表征基于 DNA 的膜张力传感器的响应。
我们将使用巨型脂质体、红血来控制各种细胞的膜张力扰动。
细胞和粘附细胞来校准 LEMONADE 对膜张力受控变化的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERDEM KARATEKIN其他文献
ERDEM KARATEKIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERDEM KARATEKIN', 18)}}的其他基金
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
- 批准号:
10405097 - 财政年份:2021
- 资助金额:
$ 25.13万 - 项目类别:
Dynamics of membrane tension and synaptic vesicle recycling
膜张力和突触小泡回收的动力学
- 批准号:
10594954 - 财政年份:2021
- 资助金额:
$ 25.13万 - 项目类别:
Dynamics of membrane tension and synaptic vesicle recycling
膜张力和突触小泡回收的动力学
- 批准号:
10364698 - 财政年份:2021
- 资助金额:
$ 25.13万 - 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
- 批准号:
10424526 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
- 批准号:
10197098 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Mechanisms of the calcium-triggered neurotransmitter release machinery in hair cells
毛细胞中钙触发神经递质释放机制的机制
- 批准号:
10636938 - 财政年份:2020
- 资助金额:
$ 25.13万 - 项目类别:
Dynamics of membrane tension and synaptic vesicle recycling
膜张力和突触小泡回收的动力学
- 批准号:
9808543 - 财政年份:2019
- 资助金额:
$ 25.13万 - 项目类别:
Nucleation and dynamics of exocytotic fusion pores
胞吐融合孔的成核和动力学
- 批准号:
10376228 - 财政年份:2014
- 资助金额:
$ 25.13万 - 项目类别:
Nucleation and dynamics of exocytotic fusion pores
胞吐融合孔的成核和动力学
- 批准号:
8615066 - 财政年份:2014
- 资助金额:
$ 25.13万 - 项目类别:
相似国自然基金
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Decoding cortical Notch signaling and morphogenic instruction at cell-cell interfaces
解码细胞-细胞界面的皮质Notch信号传导和形态发生指令
- 批准号:
10714471 - 财政年份:2023
- 资助金额:
$ 25.13万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 25.13万 - 项目类别:
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 25.13万 - 项目类别:
Biological function of testican-2 in podocyte health
testican-2 在足细胞健康中的生物学功能
- 批准号:
10599209 - 财政年份:2022
- 资助金额:
$ 25.13万 - 项目类别:
Biological function of testican-2 in podocyte health
testican-2 在足细胞健康中的生物学功能
- 批准号:
10426944 - 财政年份:2022
- 资助金额:
$ 25.13万 - 项目类别: