Mechanisms underlying activation and detoxification of aristolochic acids in human hepatic and renal cells

马兜铃酸在人肝肾细胞中的激活和解毒机制

基本信息

项目摘要

Aristolochic acids (AA), principal components of Aristolochia plants used worldwide for medicinal purposes, are potent carcinogens and nephrotoxins. Importantly, a unique mutational signature for AA has been documented in upper urothelial tract cancer, bladder cancer, renal cell carcinoma, hepatocellular carcinoma and intrahepatic cholangiocarcinoma. It is estimated that in China and other Asian countries, where herbal remedies are most widely used, 100 million people are at risk of developing AA-related cancers and/or chronic renal disease. In the US and Europe, herbal supplements containing AA are marketed through the Internet and continue to be used despite warnings to the contrary. Furthermore, in Balkan countries, Aristolochia plants are abundant in farming fields, poisoning soil and crops with AA. Considering all the above, there is an urgent need to understand biotransformation pathways of AA in order to reduce human exposure by devising novel chemical agents that control the activity of enzymes involved in AA metabolism. The limited knowledge of pathways for biotransformation of AA, amplified by the current conflict in this area of research regarding the role of sulfotransferases and nitroreductases in inducing AA toxicities, prevents the development of such strategies. This proposal builds on two important findings we obtained in earlier studies. Using an integrated human “liver- kidney-on-a-chip” system, we reported that activation of AA occurs in the liver as well as in the kidney. We also found that novel reductases might be important for AA metabolism and toxicity. Thus, the objective of this research is to evaluate the role of novel reductases in AA metabolism and toxicity and to resolve a controversy over the involvement of sulfotransferases and nitroreductases in bioactivation of AA in human liver and kidney. To achieve these goals, we employ a targeted CRISPR/CAS9 genome editing approach in human hepatic HepG2 and renal HK-2 cell lines to generate double-allelic, frame-shifting mutations in genes putatively involved in metabolism of AA. Engineered cell lines will be evaluated in terms of their sensitivity to AA and compared with respective parental cells. Mass spectrometric and DNA postlabelling techniques will be applied to quantify the major metabolites of AA and their DNA adducts, respectively. Plasmids expressing corresponding wild-type and catalytically inactive proteins will be used to transform knock-out cell lines in order to verify the involvement of particular enzymatic function in AA toxicities. To support findings in cultured cells, activities of recombinant proteins and cell lysates toward AA and N-hydroxyaristolactams, known metabolites of AA, will be studied. Successful completion of this research will establish novel genes involved in the biotransformaton of AA. This information will inform clinical scientists on design of therapeutics geared to reduce genotoxic and cytotoxic exposure, and will aid in defining individuals at risk of developing AA-related diseases. Given the worldwide exposure to AA, this research has major implications for global public health. Finally, the cell lines generated in our studies will then be available for use in investigations of other human carcinogens, toxins and drugs.
马兜铃酸 (AA) 是全世界药用马兜铃植物的主要成分, 重要的是,AA 具有独特的突变特征。 记录在上尿路上皮癌、膀胱癌、肾细胞癌、肝细胞癌和 估计在中国和其他亚洲国家,草药治疗肝内胆管癌。 使用最广泛,一亿人面临患 AA 相关癌症和/或慢性肾病的风险 在美国和欧洲,含有 AA 的草药补充剂通过互联网销售。 尽管有相反的警告,但仍继续使用马兜铃属植物。 AA在农田中大量存在,污染土壤和农作物,因此迫切需要AA。 了解 AA 的生物转化途径,通过设计新型化学物质来减少人类接触 AA 控制参与 AA 代谢的酶活性的药物 对 AA 代谢途径的了解有限。 AA 的生物转化,由于当前该研究领域关于 AA 作用的冲突而被放大 磺基转移酶和硝基还原酶诱导 AA 毒性,阻碍了此类策略的发展。 该提案基于我们在早期研究中使用综合人类“肝脏”获得的两项重要发现。 在“肾芯片”系统中,我们报道了 AA 的激活发生在肝脏和肾脏中。 发现新型还原酶可能对 AA 代谢和毒性很重要,因此,本研究的目的是。 研究旨在评估新型还原酶在 AA 代谢和毒性中的作用并解决争议 磺基转移酶和硝基还原酶参与人类肝脏和肾脏中 AA 的生物活化。 为了实现这些目标,我们在人类肝脏中采用了靶向 CRISPR/CAS9 基因组编辑方法。 HepG2 和肾 HK-2 细胞系在相关基因中产生双等位基因移码突变 将评估工程化细胞系对 AA 的敏感性,并与它们进行比较。 将应用质谱和 DNA 后标记技术来量化。 分别表达相应野生型和 AA 的主要代谢物及其 DNA 加合物。 催化失活蛋白将用于转化敲除细胞系,以验证 AA 毒性中的特殊酶功能支持培养细胞中的发现、重组体的活性。 将研究 AA 和 N-羟基马兜铃内酰胺(AA 的已知代谢物)的蛋白质和细胞裂解物。 这项研究的成功完成将建立参与 AA 生物转化的新基因。 这些信息将为临床科学家提供有关旨在减少基因毒性和细胞毒性的疗法设计的信息 鉴于全球范围内的情况,将有助于确定有患 AA 相关疾病风险的个体。 暴露于 AA,这项研究对全球公共卫生具有重大影响。 我们的研究随后将可用于其他人类致癌物、毒素和药物的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktoriya S Sidorenko其他文献

Viktoriya S Sidorenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktoriya S Sidorenko', 18)}}的其他基金

Molecular and cellular mechanisms underlying the carcinogenicity and nephrotoxicity of aristolochic acid: hallmarks of a global environmental disease
马兜铃酸致癌性和肾毒性的分子和细胞机制:全球环境疾病的标志
  • 批准号:
    10005592
  • 财政年份:
    2019
  • 资助金额:
    $ 19.94万
  • 项目类别:

相似国自然基金

等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
  • 批准号:
    32370714
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
  • 批准号:
    82300353
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
  • 批准号:
    82302575
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
  • 批准号:
    32302535
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Exercise adherence and cognitive decline: Engaging with the Black community to develop and test a goal-setting and exercise intensity intervention
运动坚持和认知能力下降:与黑人社区合作制定和测试目标设定和运动强度干预措施
  • 批准号:
    10767102
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
Itch-specific brain circuit and dopaminergic gene polymorphisms influencing individual differences in itch perception
瘙痒特异性脑回路和多巴胺能基因多态性影响瘙痒感知的个体差异
  • 批准号:
    10735592
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
  • 批准号:
    10709381
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
  • 批准号:
    10636678
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
Intravitreal gene therapy for inherited retinal disease
遗传性视网膜疾病的玻璃体内基因治疗
  • 批准号:
    10660784
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了