Polyelectrolyte Nature of Cytoskeleton Filaments
细胞骨架丝的聚电解质性质
基本信息
- 批准号:10179425
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdvanced DevelopmentAffectAgeAlgorithmsAreaAxonBinding ProteinsBiologicalBiophysical ProcessBiophysicsBiotechnologyBundlingCardiomyopathiesCell physiologyChargeCodeComputer softwareComputersCortical MalformationCrowdingCryoelectron MicroscopyCytoskeletonDataDevelopmentDevicesDilated CardiomyopathyDiseaseElectric CapacitanceElectrolytesElectrostaticsEnvironmentEquilibriumF-ActinFilamentFunctional disorderG ActinGenesGoalsGrantGrowthGuanosine TriphosphateHigher Order Chromatin StructureHypertrophic CardiomyopathyIonsLibrariesMapsMembraneMethodologyMicrofilamentsMicrotubulesModelingMolecularMolecular StructureMuscleMutationMyopathyNatureNeuronsNeurosciencesOutcomePathologicPatientsPerformancePhysiologicalPlayPreventionProductivityPropertyProtein IsoformsRadialResearchResearch Project GrantsResearch ProposalsRodRoleShapesSignal TransductionSodium ChlorideSpeedStructural defectStructureSurfaceTechniquesTestingTimeTubulinVariantWaterWidthbaseclinical applicationcomputerized toolsdeafnessdensitydesignelectric fieldelectrical potentialexperienceexperimental studyfetalfrontiergraphical user interfaceinnovationlight scatteringmalformationmutantnovelnovel therapeuticsopen sourcepolymerizationpreventprototyperepairedscreeningskeletaltheoriestransmission processzeta potential
项目摘要
Actin filaments (F-actin) and microtubules (MTs) are highly charged rod-like polyelectrolytes formed by
polymerization of G-actin and tubulin subunits, respectively. These cytoskeleton filaments are essential
for directional growth, shape, division and other important biological activities in eukaryotic cellular
processes. Mutations in G-actin / tubulin genes are often evident in pathological conditions. Actin
mutations may cause dilated or hypertrophic cardiomyopathies, congenital skeletal myopathies and
deafness. Whereas tubulin mutations are associated with fetal malformations of cortical development.
When subjected to intracellular biological environment alterations, even normal G-actin and tubulin
genes are associated with dysfunctions and malformations in F-actins / Mts such as dysregulated
assembly, misleading protein binding, abnormal polymerization stability, and defective electric signal
transmission. The basis for cytoskeleton filaments to transmit electric signals and overcome electrostatic
interactions to form bundles and networks appears primarily dominated by the polyelectrolyte nature of
these filaments rather than their tertiary structures. However, the underlying biophysical principles and
molecular mechanisms that support the polyelectrolyte nature of F-actin and MTs, and their properties
are still poorly understood due to the lack of appropriate methodologies. In this research project an
innovative approach for cytoskeleton filaments is proposed to balance accurate and efficient
computational tools with experimental techniques, making it possible for the first time, to
comprehensively and efficiently characterize bundling formation and electric signal propagation under the
numerous intracellular environments and filament molecular structures that are usually present in normal
and pathological conditions. It is hypothesized that molecular and/or cellular alterations, often evident in
pathological conditions caused by age and inheritance, break down equilibrium and competition between
the molecular mechanisms that dominate the bundling and conducting properties of cytoskeleton
filaments in normal conditions. The overall goal of this research proposal is to determine the impact of
excessive alterations in the intracellular environment and variations in the filament charge produced by
isoforms and mutations on the polyelectrolyte properties of cytoskeleton filaments. The outcomes of this
proposal is expected to provide an unprecedented molecular understanding on why and how age and
inheritance conditions induce dysfunctions and malformation in cytoskeleton filaments. This
understanding may advance the prevention and/or treatment of a variety of diseases. It may also open
unexplored frontiers in neuroscience. It might elucidate whether cytoskeleton filaments and axon
membranes are able to transmit different kind of information and what might be the role of electrical
signal propagation along filaments in neuronal cable-like theories.
肌动蛋白丝 (F-actin) 和微管 (MT) 是由以下物质形成的高电荷棒状聚电解质:
分别是G-肌动蛋白和微管蛋白亚基的聚合。这些细胞骨架丝是必不可少的
用于真核细胞的定向生长、形状、分裂和其他重要的生物活性
流程。 G-肌动蛋白/微管蛋白基因的突变在病理条件下通常很明显。肌动蛋白
突变可能导致扩张型或肥厚型心肌病、先天性骨骼肌病和
耳聋。而微管蛋白突变与胎儿皮质发育畸形有关。
当细胞内生物环境发生改变时,即使是正常的G-肌动蛋白和微管蛋白
基因与 F-肌动蛋白/Mts 的功能障碍和畸形有关,例如失调
组装、误导性蛋白质结合、聚合稳定性异常和电信号缺陷
传播。细胞骨架丝传递电信号和克服静电的基础
形成束和网络的相互作用似乎主要由聚电解质性质决定
这些细丝而不是它们的三级结构。然而,基本的生物物理学原理和
支持 F-肌动蛋白和 MT 聚电解质性质的分子机制及其特性
由于缺乏适当的方法,人们对这些问题仍然知之甚少。在这个研究项目中
提出了细胞骨架丝的创新方法来平衡准确和高效
具有实验技术的计算工具,首次使
全面有效地表征束束形成和电信号传播
正常情况下通常存在的许多细胞内环境和丝状分子结构
和病理状况。据推测,分子和/或细胞的改变通常在
年龄和遗传引起的病理状况,打破了之间的平衡和竞争
主导细胞骨架的成束和传导特性的分子机制
正常条件下的细丝。本研究计划的总体目标是确定
细胞内环境的过度改变和细丝电荷的变化
细胞骨架丝聚电解质特性的亚型和突变。这样做的结果
该提案预计将为年龄和年龄的原因和方式提供前所未有的分子理解。
遗传条件会引起细胞骨架丝的功能障碍和畸形。这
了解可以促进多种疾病的预防和/或治疗。也可能会打开
神经科学中未探索的前沿。它可能阐明细胞骨架丝和轴突是否
膜能够传输不同类型的信息以及电的作用可能是什么
类似神经元电缆的理论中的信号沿着细丝传播。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrical impulse characterization along actin filaments in pathological conditions.
病理条件下沿肌动蛋白丝的电脉冲特征。
- DOI:
- 发表时间:2022-06
- 期刊:
- 影响因子:6.3
- 作者:Hunley, Christian;Mohsin, Md;Marucho, Marcelo
- 通讯作者:Marucho, Marcelo
Java application for cytoskeleton filament characterization (JACFC).
用于细胞骨架丝表征 (JACFC) 的 Java 应用程序。
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Marucho; Marcelo
- 通讯作者:Marcelo
Theory of Weakly Polydisperse Cytoskeleton Filaments.
弱多分散细胞骨架丝理论。
- DOI:
- 发表时间:2022-05-17
- 期刊:
- 影响因子:5
- 作者:Warshavsky, Vadim;Marucho, Marcelo
- 通讯作者:Marucho, Marcelo
A Java Application to Characterize Biomolecules and Nanomaterials in Electrolyte Aqueous Solutions.
用于表征电解质水溶液中生物分子和纳米材料的 Java 应用程序。
- DOI:
- 发表时间:2019-09
- 期刊:
- 影响因子:6.3
- 作者:Marucho; Marcelo
- 通讯作者:Marcelo
Electrical Propagation of Condensed and Diffuse Ions Along Actin Filaments.
凝聚和扩散离子沿肌动蛋白丝的电传播。
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:1.2
- 作者:Hunley, Christian;Marucho, Marcelo
- 通讯作者:Marucho, Marcelo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcelo Marucho其他文献
Marcelo Marucho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcelo Marucho', 18)}}的其他基金
相似国自然基金
减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
- 批准号:61070023
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Functional genomics investigation of pleiotropic vascular disease loci
多效性血管疾病位点的功能基因组学研究
- 批准号:
10501722 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Profilin as a Novel Target for Vascular Normalization in Renal Cancer
Profilin 作为肾癌血管正常化的新靶点
- 批准号:
10525305 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Profilin as a Novel Target for Vascular Normalization in Renal Cancer
Profilin 作为肾癌血管正常化的新靶点
- 批准号:
10686091 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Targeting the MICAL2 signaling axis in pancreatic cancer
靶向胰腺癌中的 MICAL2 信号轴
- 批准号:
10676946 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Targeting the MICAL2 signaling axis in pancreatic cancer
靶向胰腺癌中的 MICAL2 信号轴
- 批准号:
10676946 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别: