Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
基本信息
- 批准号:10179677
- 负责人:
- 金额:$ 44.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-19 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAdoptionAdverse effectsAffectAnatomyAnxietyCancer BurdenCancer PatientCaringCessation of lifeCharacteristicsClinicalCommunitiesDataData SetDecision Support SystemsDesire for foodDiagnosisDiseaseDocumentationDrowsinessElectronic Health RecordEngineeringEvaluationFrequenciesFundingFutureGoalsGoldGrainHospitalsImpairmentInformation RetrievalInstitutesInstitutionInterventionLocationMalignant NeoplasmsMalignant neoplasm of prostateMethodsModelingNatural Language ProcessingNatureNauseaOncologyOutcomeOutpatientsPainPalliative CarePatientsPerformancePhysiciansPractice GuidelinesPreventionProfessional OrganizationsProviderPublicationsQuality of lifeRecordsReportingResourcesSemanticsServicesSeveritiesShortness of BreathSpecialistStructureSupervisionSupportive careSymptomsSystemTechnologyTestingTimeTrainingUtahVisitWashingtonWell in selfWorkbasecancer carecancer complicationcancer therapycancer typecare systemscohortcost effectivenessdeep learningexperiencefield studyimplementation barriersimprovedinnovationinstrumentlarge cell Diffuse non-Hodgkin&aposs lymphomalearning strategymultidisciplinarynoveloncology serviceopen sourcepatient health informationrelating to nervous systemrepositorysymptom managementsymptomatic improvement
项目摘要
Project Summary / Abstract
Cancer patients frequently experience high levels of pain, tiredness, shortness of breath, decreased appetite,
nausea, drowsiness, anxiety, and decreased sense of wellbeing, often related to the disease itself, its
treatments, or both. This high symptom burden leads to significant impairment of cancer patients’ quality of life
and may be associated with impaired survival. Optimal symptom management is required to minimize
symptom burden and maximize quality of life for cancer patients throughout the course of their disease.
Supportive care in cancer (SCC) teams are multidisciplinary teams that are focused on the prevention and
management of the adverse effects of cancer and its treatments across the continuum of the cancer
experience from diagnosis through treatment and beyond. These teams typically lack the resources to see all
cancer patients and need to prioritize patients with the highest need, often relying on oncology physicians for
referral. However, oncology physicians are often too focused on curing cancer than treating its symptoms. As a
result, SCC services are often accessed by chance even when available, often later in the cancer trajectory. To
improve recognition of SCC needs and to identify the symptom burden of cancer patients for better
management and care, we propose to build natural language processing (NLP) approaches that can
automatically extract symptom information from unstructured narratives. The proposed systems will utilize
neural nets and build on the state of the art information extraction methods. To accomplish our goals, we will
create a dataset of clinical notes for a large cohort of prostate cancer and Diffuse Large B Cell Lymphoma
(DLBCL) patients treated in Seattle Cancer Care Alliance (SCCA) and Huntsman Cancer Institute (HCI)
between 1.1.2015 and 1.1.2020. We focus on these two types of cancer as examples of two very different and
prevalent cancer types. We propose to represent symptom burden documented in clinical narratives with a
generalizable frame representation that captures fine-grained details including presence/absence, change-of-
state, severity, characteristics, duration, frequency, and anatomy information related to patient symptoms. We
will use active learning to create a diverse and representative gold standard annotated with symptom frames to
train and test the proposed neural-based NLP approaches. All models and their implementations produced
during the execution of this project will be shared with the community as open source resources. After
successful completion of the project, the developed NLP methods will be integrated into the information access
methods of SCCA and HCI clinical repositories.
项目概要/摘要
癌症患者经常会感到严重的疼痛、疲倦、气短、食欲下降、
恶心、嗜睡、焦虑和幸福感下降,通常与疾病本身有关
这种高症状负担会导致癌症患者的生活质量显着受损。
并且可能与生存受损有关,需要最佳的症状管理以尽量减少。
减轻癌症患者在整个疾病过程中的症状负担并最大限度地提高生活质量。
癌症支持护理 (SCC) 团队是多学科团队,专注于癌症的预防和治疗
癌症的不利影响的管理及其在整个癌症过程中的治疗
这些团队通常缺乏了解所有情况的资源。
癌症患者,需要优先考虑最需要的患者,通常依靠肿瘤医生
然而,肿瘤科医生往往过于关注治疗癌症而不是治疗其症状。
因此,即使可以提供 SCC 服务,也常常是偶然获得的,通常是在癌症发展的后期。
提高对 SCC 需求的认识并确定癌症患者的症状负担,以便更好地
管理和护理,我们建议建立自然语言处理(NLP)方法
所提出的系统将自动从非结构化叙述中提取症状信息。
神经网络并建立在最先进的信息提取方法的基础上,为了实现我们的目标,我们将。
为大量前列腺癌和弥漫性大 B 细胞淋巴瘤创建临床记录数据集
在西雅图癌症护理联盟 (SCCA) 和亨斯曼癌症研究所 (HCI) 接受治疗的 (DLBCL) 患者
2015 年 1 月 1 日至 2020 年 1 月 1 日期间,我们重点关注这两种类型的癌症,作为两种截然不同的癌症的例子。
我们建议用临床叙述中记录的症状负担来表示。
可概括的框架表示,捕获细粒度的细节,包括存在/不存在、变化
与患者症状相关的状态、严重程度、特征、持续时间、频率和解剖信息。
将利用主动学习来创建一个多样化且具有代表性的黄金标准,并用症状框架进行注释
训练和测试所提出的基于神经的 NLP 方法。产生的所有模型及其实现。
在该项目执行期间将作为开源资源与社区共享。
项目成功完成后,所开发的NLP方法将被整合到信息获取中
SCCA 和 HCI 临床存储库的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meliha Yetisgen其他文献
Meliha Yetisgen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meliha Yetisgen', 18)}}的其他基金
Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
- 批准号:
10591957 - 财政年份:2022
- 资助金额:
$ 44.45万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8804856 - 财政年份:2014
- 资助金额:
$ 44.45万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8635902 - 财政年份:2014
- 资助金额:
$ 44.45万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Combining sources of information to improve HIV pre-exposure prophylaxis
结合信息来源改善艾滋病毒暴露前预防
- 批准号:
10700193 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别:
A Technology-enhanced and Multilevel Approach to Promote Cervical Cancer Prevention Among Women Living with HIV
采用技术增强的多层次方法促进艾滋病毒感染妇女的宫颈癌预防
- 批准号:
10740622 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别:
DYnamics of Contraception in Eswatini (DYCE)
斯威士兰避孕动态 (DYCE)
- 批准号:
10590998 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别:
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别:
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 44.45万 - 项目类别: