Synaptic and Circuit Interactions to Shape Multisensory Processing
突触和电路相互作用塑造多感官处理
基本信息
- 批准号:10176188
- 负责人:
- 金额:$ 38.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAnatomyAreaAssociation LearningAxonBackBehaviorBehavioralBrainCellsCommunicationCuesDendritesDetectionElectrophysiology (science)EmotionalExerciseFeedbackFunctional disorderHeadHippocampus (Brain)Impaired cognitionIn VitroLateralLearningLong-Term PotentiationMedialMemoryModelingMusNamesNeurologicNeuronsNeurosciencesOdorsOutputPathway interactionsPatientsPatternPerformancePhasePlayPost-Traumatic Stress DisordersProcessPropertyResearchRoleRouteSamplingSchizophreniaSensoryShapesSignal TransductionSymptomsSynapsesSynaptic TransmissionTestingTimeViralautism spectrum disorderbasebehavior testbehavioral impairmententorhinal cortexenvironmental changeexperienceexperimental studyimprovedin vivoinformation processinginsightlearned behaviorlight gatedlong term memoryloss of functionmemory processmultisensorynervous system disorderneural circuitneuromechanismneuropsychiatric disorderneuropsychiatrynoveloptogeneticsparallel processingrelating to nervous systemresponsesensory cortexsensory gatingsensory inputtime interval
项目摘要
A critical step during sensory processing is the extraction of relevant information about the outside world from a
host of distracting sensory inputs. One mechanism for generating salience is to associate sensory information
from ongoing experiences with memories derived from past sensory experiences. Where and how these
functional associations occur in the brain are central questions in neuroscience. This proposal aims to fill this
gap by exploring circuit interactions and single neuron computations that help assign mnemonic
valence to sensory signals. In this study, we propose that the hippocampus—the center of learning and
memory—plays a crucial role in gating sensory information flow through its reciprocal circuit interactions with
the entorhinal cortex, a hub for processing multisensory information. To test this hypothesis, we will use
anatomical and functional connectivity mapping experiments to validate how hippocampus communicates with
entorhinal cortex output layers (Aim 1). We will assess how hippocampal inputs modulate the short-term
plasticity dynamics of excitatory-inhibitory synaptic transmission in the entorhinal cortex (Aim 2). Finally, we
will test whether the hippocampus actively modulates the synaptic strength and gain of sensory inputs to
entorhinal cortex through dendritic integration and long-term plasticity mechanisms (Aim 3a) and how silencing
the CA1 inputs to EC will affect contextual learning behavior (Aim 3b).
Despite 60 years of research on memory processing, we know surprisingly little about the organization
and function of hippocampal projection circuitry and the mechanisms by which memories modulate ongoing
sensory processing in the entorhinal cortex. Our study will combine state-of-the-art in vitro and in vivo
approaches, including electrophysiology, behavioral testing, and optogenetics, to provide a functional model of
the unexplored hippocampal-entorhinal cortex reciprocal circuit. Exciting pilot experiments from our lab have
already revealed a new pathway between the hippocampus and entorhinal cortex that implies a true reciprocal
feedback circuit loop. This circuit connects the hippocampus directly to entorhinal cortex output neurons that
project sensory information to the hippocampus. Our new circuit model is potentially transformative, for it
describes a route by which the hippocampus directly transmits memory input to the entorhinal cortex, with
minimal lag and transformation, to refine sensory output based on relevance and to quickly adapt behavior in
response to changing environmental demands. Such a function could be used by the brain to facilitate
reinforced learning, refine old memories, and form new memory associations. By identifying the neural circuit
interactions between the hippocampus and entorhinal cortex, our study will greatly improve our understanding
of the mechanisms that underlie the memory-related sensory processing deficits experienced by patients of
several neurological and neuropsychiatric illnesses, including Alzheimer’s disease, schizophrenia and PTSD.
感觉处理过程中的一个关键步骤是从外部世界的相关信息中提取
产生显着性的一种机制是关联感官信息。
来自持续的经验和来自过去感官经验的记忆。
大脑中发生的功能关联是神经科学的核心问题。该提案旨在解决这个问题。
通过探索有助于分配助记符的电路交互和单神经元计算来弥补差距
在这项研究中,我们提出海马体是学习和感觉的中心。
记忆——通过与记忆的相互电路相互作用,在控制感觉信息流方面发挥着至关重要的作用。
内嗅皮层是处理多感官信息的枢纽,为了检验这一假设,我们将使用内嗅皮层。
解剖和功能连接映射实验,以验证海马体如何与
我们将评估海马输入如何调节短期。
内嗅皮层兴奋性-抑制性突触传递的可塑性动力学(目标 2)。
将测试海马体是否主动调节突触强度和感觉输入的增益
内嗅皮层通过树突整合和长期可塑性机制(目标 3a)以及如何沉默
CA1 对 EC 的输入将影响情境学习行为(目标 3b)。
尽管对记忆处理的研究已有 60 年历史,但我们对其组织却知之甚少
海马投射电路的功能和记忆调节正在进行的机制
我们的研究将结合最先进的体外和体内感觉处理。
方法,包括电生理学、行为测试和光遗传学,以提供功能模型
我们的实验室进行了令人兴奋的试点实验。
已经揭示了海马体和内嗅皮层之间的一条新通路,这意味着真正的相互关系
该电路将海马体直接连接到内嗅皮层输出神经元。
将感觉信息投射到海马体,我们的新电路模型具有潜在的变革性。
描述了海马体直接将记忆输入传输到内嗅皮层的途径,其中
最小的滞后和转换,根据相关性细化感官输出并快速适应行为
大脑可以利用这种功能来促进对不断变化的环境需求的响应。
通过识别神经回路强化学习、提炼旧记忆并形成新的记忆关联。
海马体和内嗅皮层之间的相互作用,我们的研究将极大地提高我们的理解
患者经历的与记忆相关的感觉处理缺陷背后的机制
多种神经系统和神经精神疾病,包括阿尔茨海默病、精神分裂症和创伤后应激障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayeeta Basu其他文献
Jayeeta Basu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayeeta Basu', 18)}}的其他基金
Reexamining the Role of Dendrites in Neuronal Function
重新审视树突在神经元功能中的作用
- 批准号:
10721626 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Synaptic and Circuit Interactions to Shape Multisensory Processing
突触和电路相互作用塑造多感官处理
- 批准号:
10400870 - 财政年份:2018
- 资助金额:
$ 38.25万 - 项目类别:
Linking Plasticity of Hippocampal Representation across the Single Neuron and Circuit Levels
将单个神经元和电路层面的海马表征的可塑性联系起来
- 批准号:
10202771 - 财政年份:2018
- 资助金额:
$ 38.25万 - 项目类别:
Linking Plasticity of Hippocampal Representation across the Single Neuron and Circuit Levels
将单个神经元和电路层面的海马表征的可塑性联系起来
- 批准号:
9789069 - 财政年份:2018
- 资助金额:
$ 38.25万 - 项目类别:
Linking Plasticity of Hippocampal Representation across the Single Neuron and Circuit Levels
将单个神经元和电路层面的海马表征的可塑性联系起来
- 批准号:
10437710 - 财政年份:2018
- 资助金额:
$ 38.25万 - 项目类别:
Synaptic and Circuit Interactions to Shape Multisensory Processing
突触和电路相互作用塑造多感官处理
- 批准号:
9769910 - 财政年份:2018
- 资助金额:
$ 38.25万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别: