Role of Extracellular Vesicles in Bone-Muscle Crosstalk with Aging
细胞外囊泡在衰老过程中骨-肌肉串扰中的作用
基本信息
- 批准号:10166745
- 负责人:
- 金额:$ 34.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Age-Related Bone LossAge-Related OsteoporosisAgingBlood CirculationBlood VesselsBone MarrowBone SurfaceCell CommunicationCell LineCell modelCell physiologyCellsCommunicationDataDendritesDiagnosisDiseaseDistantDockingElderlyExerciseHarvestHindlimbHormonesImageImpairmentIn VitroKineticsLabelLaboratoriesLeadMarrowMediatingMediator of activation proteinMembraneMesenchymal Stem CellsMessenger RNAMicroRNAsMolecularMonitorMusMuscleMuscle CellsMuscle FibersMuscle functionMuscular AtrophyMyoblastsOsteoblastsOsteocytesOsteoporosisPhenotypePopulationProteinsProteomeQuality of lifeRegulationReporterRoleRunningSignal TransductionSiteSkeletal MuscleTestingTissuesTransgenic OrganismsUndifferentiatedWorkage effectage relatedagedbeta cateninbonebone cellbone circulationcell agecell typecirculating biomarkersexosomeextracellular vesiclesin vivoinsightintravital imaginglive cell imagingmicroCTmicrovesiclesmouse modelmuscle regenerationnovelnovel therapeuticsparacrineparticlesarcopeniauptakevesicular release
项目摘要
ABSTRACT
Osteoporosis and sarcopenia are diseases of aging that frequently occur together and reduce quality of life
in the elderly population. Evidence is emerging for signaling crosstalk between bone and muscle via
circulating and local mediators, leading to the concept that muscle-bone crosstalk may coordinate age-
related degenerative changes. An exciting new paradigm in cell-cell communication is that extracellular
vesicles (EV) (exosomes and microvesicles) may provide a novel mechanism for communication between
cells. It has also been proposed that circulating muscle-derived exosomes (termed “exersomes”) may
mediate some of the beneficial effects of exercise in the body. EV are membrane-bound particles shed
from cells with a cargo of proteins, mRNAs and microRNAs (miRNAs). The EV dock with a target cell,
delivering their cargo and altering its function. We have shown that young and aged osteocytes shed EV,
which may provide a novel mechanism for regulation of osteoblast function. Live cell imaging suggests
osteocytes shed EV from their cell body and dendrites and may shed them into the circulation. Osteocyte
EV are taken up by osteoblasts and myoblasts and have potent effects on osteoblasts to promote
differentiation towards an early osteocyte phenotype. EV from myoblasts and myotubes are taken up by
osteocytes and induce β-catenin signaling. These findings lead to our overall hypothesis that extracellular
vesicles (EV) are important regulators of bone and muscle cell function and provide a novel
mechanism for crosstalk between muscle and bone that may regulate age-related osteoporosis
and sarcopenia. This hypothesis will be tested using complimentary in vitro and in vivo approaches and
using intravital imaging in young and aged mouse models with fluorescent reporters to tag bone and muscle
cells. Aim 1 will determine the role of EV in regulating osteocyte-osteoblast reciprocal interactions in vitro
and in vivo and how this is altered by aging and exercise. This will be done using EV from osteoblast and
osteocyte cell lines and primary cells to determine EV effects on the differentiated function of the reciprocal
cell type. Aim 2 will determine the role of EV in regulating muscle-bone crosstalk and how it is altered by
aging and exercise. This will be done using EV from myoblast, osteoblast and osteocyte cell lines and
primary cells to determine EV effects on the differentiated function of the reciprocal cell types. In both aims,
live cell and intravital imaging will determine the kinetics of EV release and uptake in muscle and bone cells
in vitro and in vivo. Young and aged mouse models will be used with and without wheel running exercise
to determine in vitro and in vivo the effect of aging and exercise on EV release, composition and function.
These studies may result in paradigm shifting insight into the mechanisms of molecular crosstalk between
bone and muscle and will pave the way for exploiting the potential of muscle and bone derived EVs as
circulating biomarkers and as novel therapeutics for age related bone and muscle loss.
抽象的
骨质疏松症和肌肉减少症是经常一起发生并降低生活质量的衰老疾病
越来越多的证据表明骨骼和肌肉之间通过信号传递串扰。
循环和局部介质,导致肌肉骨骼串扰可能协调年龄的概念
相关的退行性变化是细胞间通讯的一个令人兴奋的新范例。
囊泡(EV)(外泌体和微囊泡)可能为细胞之间的通讯提供一种新的机制
也有人提出,循环肌肉来源的外泌体(称为“exersomes”)可能
EV 调节体内运动的一些有益效果是膜结合颗粒脱落。
来自含有蛋白质、mRNA 和 microRNA (miRNA) 的细胞 EV 与靶细胞对接,
我们已经证明,年轻和衰老的骨细胞会脱落 EV,
这可能为成骨细胞功能的调节提供一种新的机制。
骨细胞从细胞体和树突中脱落 EV,并可能将其流入循环系统。
EV 被成骨细胞和成肌细胞吸收,对成骨细胞具有有效的促进作用
EV从成肌细胞和肌管分化为早期骨细胞表型。
这些发现导致我们的总体假设是细胞外。
囊泡(EV)是骨和肌肉细胞功能的重要调节剂,并提供了一种新的
肌肉和骨骼之间的串扰机制可能调节与年龄相关的骨质疏松症
该假设将使用互补的体外和体内方法进行测试。
在年轻和老年小鼠模型中使用活体成像,并使用荧光发生器来标记骨骼和肌肉
目标 1 将确定 EV 在体外调节骨细胞-成骨细胞相互作用中的作用。
以及体内的情况以及衰老和运动如何改变这一点,这将使用来自成骨细胞和运动的 EV 来完成。
骨细胞系和原代细胞以确定 EV 对分化功能倒数的影响
目标 2 将确定 EV 在调节肌肉-骨骼串扰中的作用以及它如何被改变。
这将使用来自成肌细胞、成骨细胞和骨细胞系的 EV 来完成。
原代细胞以确定 EV 对相互细胞类型的分化功能的影响 在这两个目标中,
活细胞和活体成像将确定肌肉和骨细胞中 EV 释放和摄取的动力学
体外和体内的年轻和老年小鼠模型将在有或没有轮跑运动的情况下使用。
确定体外和体内衰老和运动对 EV 释放、组成和功能的影响。
这些研究可能会导致对分子间相互作用机制的范式转变。
骨骼和肌肉,将为开发肌肉和骨骼衍生电动汽车的潜力铺平道路
循环生物标志物以及作为与年龄相关的骨和肌肉损失的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SARAH L DALLAS其他文献
SARAH L DALLAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SARAH L DALLAS', 18)}}的其他基金
Leica Stellaris 8 Confocal Microscope System
Leica Stellaris 8 共焦显微镜系统
- 批准号:
10431037 - 财政年份:2022
- 资助金额:
$ 34.09万 - 项目类别:
Osteocyte Control of Osteoblast Dynamics with Aging
骨细胞对衰老过程中成骨细胞动力学的控制
- 批准号:
8281074 - 财政年份:2012
- 资助金额:
$ 34.09万 - 项目类别:
Optimizing Normal Collagen Replacement in Osteogenesis Imperfecta
优化成骨不全患者的正常胶原蛋白替代
- 批准号:
8502630 - 财政年份:2012
- 资助金额:
$ 34.09万 - 项目类别:
Role of Extracellular Vesicles in Bone-Muscle Crosstalk with Aging
细胞外囊泡在衰老过程中骨-肌肉串扰中的作用
- 批准号:
10413019 - 财政年份:2012
- 资助金额:
$ 34.09万 - 项目类别:
Optimizing Normal Collagen Replacement in Osteogenesis Imperfecta
优化成骨不全患者的正常胶原蛋白替代
- 批准号:
8390315 - 财政年份:2012
- 资助金额:
$ 34.09万 - 项目类别:
Zeiss LSM 710 Confocal Microscopy System for Imaging of Mineralized Tissues
用于矿化组织成像的蔡司 LSM 710 共焦显微镜系统
- 批准号:
8050238 - 财政年份:2011
- 资助金额:
$ 34.09万 - 项目类别:
相似海外基金
Novel mechanisms of muscle and bone loss with HIV infection, antiretroviral therapy, and aging.
HIV 感染、抗逆转录病毒治疗和衰老导致肌肉和骨质流失的新机制。
- 批准号:
10696502 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Age-Dependent N-Glycosylation of Follicle-Stimulation Hormone in Gonadotropes
促性腺激素中卵泡刺激激素的年龄依赖性 N-糖基化
- 批准号:
10679254 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Identifying the long-term metabolic complications of in-utero and lactational antiretroviral exposure
确定子宫内和哺乳期抗逆转录病毒暴露的长期代谢并发症
- 批准号:
10762179 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Illuminating adipo-osteoprogenitors in the bone marrow
照亮骨髓中的脂肪骨祖细胞
- 批准号:
10590788 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别:
Computed tomography muscle size and composition associations with hip and spine bone strength over 4 years: SOMMA-CT
4 年来计算机断层扫描肌肉大小和成分与髋部和脊柱骨强度的关系:SOMMA-CT
- 批准号:
10741630 - 财政年份:2023
- 资助金额:
$ 34.09万 - 项目类别: