A systems approach to hemostasis and thrombosis
止血和血栓形成的系统方法
基本信息
- 批准号:10161823
- 负责人:
- 金额:$ 54.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-10 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAgonistAlpha GranuleAntibodiesAntiplatelet DrugsArchitectureArkansasArteriesBlood PlateletsBlood VesselsBlood flowBrainCarotid ArteriesClot retractionCoagulation ProcessCollaborationsComplexComputer ModelsConvectionCoronary arteryDefectDevicesDiffusionEngineeringEnvironmentEventFaceFibrinGoalsHeartHemorrhageHemostatic AgentsHemostatic functionHumanHybridsImageIndividualInjuryMeasuresMethodsMicrofluidic MicrochipsMicroscopyMolecularMusMyocardial InfarctionNatural ImmunityPathologicPhospholipidsPhysiologicalPlatelet ActivationPlatelet Count measurementProcessRegulationResearch PersonnelResolutionRoleScanning Electron MicroscopySchoolsSepsisShapesStrokeStructureStructure of jugular veinSurfaceSurgeonSyndromeSystemTestingThrombinThrombosisThrombusTissuesTranslatingTraumaUniversitiesVariantVeinsVenous ThrombosisWorkblood damagecerebrovascularcomputer studiesdensityimprovedin vivoinhibitor/antagonistm-calpainmu-calpainnovelphysical propertyplatelet functionpreventreconstructionregional differenceresponsescale upsubmicronsystemic inflammatory responsethrombotictumor growthvascular injury
项目摘要
Project 3 Abstract
Platelet activation is critical for hemostasis and a contributing factor in thrombosis. Although recent studies have
highlighted roles for platelets in diverse processes, the rapid accumulation of large numbers of platelets remains
the hallmark of hemostasis and arterial thrombosis, and is the major focus of this project. Our recent studies in
the mouse microvasculature show that the hemostatic response to small injuries produces a relatively simple
structure in which a core of fully-activated platelets is overlaid by a shell of less-activated platelets. Dense
packing in the core acts as a molecular trap, establishing an environment in which diffusion replaces convection.
This structure allows thrombin and other agonists to form overlapping gradients that produce regional differences
in platelet activation and fibrin distribution. Recognizing that transport is regulated by platelet packing density is
a paradigm shift, suggesting that platelet procoagulant activity arises from forming a sheltered environment and
not just from phospholipid exposure. We believe that this concept is key to understanding the impact of
antiplatelet agents and the events of arterial thrombosis. Testing it calls for scaling up to larger injuries in larger
vessels, and for extending our analysis from mice to humans and from hemostasis to thrombosis, all with a
hybrid experimental and computational approach that integrates with and supports the other projects in this PPG.
Aim #1 will examine the spatial and temporal distribution of platelet activation at high resolution, measure
transport in the gaps between platelets, and examine the hemostatic response in large arteries and veins. The
initial results show a more complex architecture with regions of greater and lesser platelet activation and packing
density, and large differences between the luminal and abluminal surfaces. Our subcontract with Brian Storrie at
the University of Arkansas will allow 3-dimensional reconstruction of larger hemostatic thrombi at the sub-micron
level. In collaboration with Project 4 we will examine the impact of sepsis and systemic inflammation on platelet
function in vivo and support studies on the impact of the PF4-directed antibody, KKO. Studies with µ- and m-
calpain deficient mice will support work in Project 2, but also be part of understanding the role of clot retraction
in limiting transport through larger hemostatic structures. Aim #2 will examine the mechanisms that shape the
hemostatic plug, testing the hypothesis that hemostatic structure requires tight regulation of the extent of platelet
activation and the delivery of platelet cargoes deep within the hemostatic mass. Studies on NBEAL2-/- (gray
platelet syndrome) mice and the “empty a-granule” mice developed in Project 1 will allow us to examine the role
of secretion on hemostatic plug architecture. Aim #3 will determine whether the ordered hemostatic structure
that we have observed in mice applies to humans, and how it differs in arterial thrombosis as compared to
hemostasis. The human studies will be performed in vivo with Penn trauma surgeon, Carrie Sims, and ex vivo
using a novel microfluidics device developed with Dan Huh in Penn’s School of Engineering. Studies of human
arterial thrombi will be done in collaboration with Project #2 co-investigator John Weisel.
项目3摘要
尽管最近的研究表明,血小板活化对于止血至关重要,也是血栓形成的一个促成因素。
强调了血小板在不同过程中的作用,大量血小板的快速积累仍然存在
止血和动脉血栓形成的标志,也是我们最近研究的重点。
小鼠微血管系统显示,对小损伤的止血反应产生相对简单的
其结构是,完全活化的血小板核心被活化程度较低的致密血小板外壳所覆盖。
核心中的堆积起到分子陷阱的作用,建立了一个扩散取代对流的环境。
这种结构允许凝血酶和其他激动剂形成重叠梯度,从而产生区域差异
认识到运输是由血小板堆积密度调节的。
范式转变,表明血小板促凝血活性源于形成一个受庇护的环境和
不仅仅是磷脂暴露,我们相信这个概念是理解影响的关键。
抗血小板药物和动脉血栓形成事件需要扩大到更大范围的损伤。
血管,并将我们的分析从小鼠扩展到人类,从止血扩展到血栓形成,所有这些都具有
混合实验和计算方法,与该 PPG 中的其他项目集成并支持其他项目。
目标#1将以高分辨率检查血小板活化的空间和时间分布,测量
血小板之间间隙的运输,并检查大动脉和静脉的止血反应。
初始区域显示出更复杂的结构,具有更大或更小的血小板激活和堆积
密度,以及腔内和近腔表面之间的巨大差异 我们与 Brian Storrie 的分包合同。
阿肯色大学将允许对亚微米级较大止血血栓进行 3 维重建
与项目 4 合作,我们将研究败血症和全身炎症对血小板的影响。
体内功能并支持针对 PF4 的抗体的影响研究,KKO 使用 µ- 和 m- 进行的研究。
缺乏钙蛋白酶的小鼠将支持项目 2 的工作,同时也是理解血块收缩作用的一部分
目标#2将研究塑造止血结构的机制。
止血塞,检验止血结构需要严格调节血小板程度的假设
NBEAL2-/-(灰色)止血块内血小板货物的激活和输送研究。
血小板综合征)小鼠和项目 1 中开发的“空 a 颗粒”小鼠将使我们能够检查其作用
目的#3将决定止血结构是否有序。
我们在小鼠身上观察到的结果也适用于人类,以及与人类相比,它在动脉血栓形成方面有何不同
人体研究将由宾夕法尼亚大学创伤外科医生 Carrie Sims 进行体内研究,以及离体研究。
使用宾夕法尼亚大学人类工程研究学院的 Dan Huh 开发的新型微流体装置。
动脉血栓治疗将与项目 #2 联合研究员 John Weisel 合作完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAWRENCE F BRASS其他文献
LAWRENCE F BRASS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAWRENCE F BRASS', 18)}}的其他基金
Studies of Physiologic and Pathologic Platelet Plug Formation
生理和病理血小板栓子形成的研究
- 批准号:
10656284 - 财政年份:2020
- 资助金额:
$ 54.73万 - 项目类别:
Studies of Physiologic and Pathologic Platelet Plug Formation
生理和病理血小板栓子形成的研究
- 批准号:
10434806 - 财政年份:2020
- 资助金额:
$ 54.73万 - 项目类别:
A systems approach to hemostasis and thrombosis
止血和血栓形成的系统方法
- 批准号:
10434811 - 财政年份:2020
- 资助金额:
$ 54.73万 - 项目类别:
Studies of Physiologic and Pathologic Platelet Plug Formation
生理和病理血小板栓子形成的研究
- 批准号:
10161819 - 财政年份:2020
- 资助金额:
$ 54.73万 - 项目类别:
A systems approach to hemostasis and thrombosis
止血和血栓形成的系统方法
- 批准号:
10656296 - 财政年份:2020
- 资助金额:
$ 54.73万 - 项目类别:
Regulation of the early events of platelet activation
血小板活化早期事件的调节
- 批准号:
7888575 - 财政年份:2010
- 资助金额:
$ 54.73万 - 项目类别:
Regulation of the early events of platelet activation
血小板活化早期事件的调节
- 批准号:
8065935 - 财政年份:2010
- 资助金额:
$ 54.73万 - 项目类别:
Regulation of the early events of platelet activation
血小板活化早期事件的调节
- 批准号:
8242745 - 财政年份:2010
- 资助金额:
$ 54.73万 - 项目类别:
Regulation of the early events of platelet activation
血小板活化早期事件的调节
- 批准号:
8456213 - 财政年份:2010
- 资助金额:
$ 54.73万 - 项目类别:
相似国自然基金
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡瓦胡椒中选择性大麻素2型受体激动剂的发现及其抗骨质疏松作用研究
- 批准号:82360684
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
脂质纳米粒体内介导嵌合抗原受体-M1型巨噬细胞协同TLR激动剂治疗实体瘤的研究
- 批准号:82304418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Evaluation of genetic variants affecting platelet function with CRISPR HDR in human megakaryocytes
利用 CRISPR HDR 评估影响人类巨核细胞血小板功能的遗传变异
- 批准号:
10737494 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Transcriptional Dysfunction in Dentate Gyrus Cell Types: Roles of Retinoic Acid Responsive Genes in Protection Against Alzheimer's Disease Pathogenesis
齿状回细胞类型的转录功能障碍:视黄酸反应基因在预防阿尔茨海默病发病机制中的作用
- 批准号:
10367173 - 财政年份:2022
- 资助金额:
$ 54.73万 - 项目类别: