Predictive Modeling of COVID-19 Progression in Older Patients
老年患者 COVID-19 进展的预测模型
基本信息
- 批准号:10162283
- 负责人:
- 金额:$ 37.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcute Lung InjuryAdult Respiratory Distress SyndromeAttenuatedAutopsyBioinformaticsBiologicalBiological MarkersBloodCOVID-19Cell CommunicationCessation of lifeChinaCitiesClinicalCountyDataData SetDeath RateDevelopmentDiabetes MellitusDiseaseDisease ProgressionElderlyEpithelial CellsFibrosisFormulationFutureHypertensionIndividualInfectionInfectious Diseases ResearchInterventionLearningLinkLouisianaLungMachine LearningMapsModelingMolecularMolecular GeneticsMonitorObesityOutcomePathway AnalysisPathway interactionsPatientsPharmacologic SubstancePlasmaPopulationPopulation StudyPrevention strategyProcessPulmonary FibrosisRNAResearchRespiratory physiologyRiskRisk FactorsRoleSeveritiesSpecimenStructure of parenchyma of lungSyndromeTestingTissue ModelTreatment EfficacyUnited StatesUniversitiesValidationViralVirusbasebiomarker identificationcell injurycohortcoronavirus diseasecytokinecytokine release syndromedesigneffective therapyevidence baseextracellulargenetic predictorsindividualized medicinelung injurymathematical modelmolecular pathologymultiorgan injurynonhuman primateolder patientopen sourcepandemic diseasepredictive modelingpredictive testrepairedresearch studytargeted treatmenttherapeutic targettherapy designtooltreatment planningvirologywound healing
项目摘要
The objective of this proposal is to develop a predictive model to identify individuals who are infected with
SARS-CoV-2 and at risk of developing severe COVID-19. Louisiana has the 5th highest death rate per capita in
the United States as of May 4th, 2020. Severe disease is seen in older individuals and those with underlying
conditions. The New Orleans population is particularly susceptible to severe COVID-19 as hypertension,
diabetes and obesity are rampant. After infection, acute lung injury caused by the virus must be repaired to
regain lung function and avoid acute respiratory distress syndrome and pulmonary fibrosis. Mounting evidence
suggests that patients with severe COVID-19 have cytokine storm syndrome, which may exacerbate
multiorgan injury and risk of fibrotic complications. Lack of effective ways to identify and attenuate severe
COVID-19 progression persist due to limited understanding of the biological pathways responsible for cytokine
storm syndrome and increased risk in older patients. Therefore, there is a need to determine the critical
cytokine profiles responsible for severe COVID-19 progression to develop effective treatments. Further, it is
essential to find a way to stage disease trajectory(ies) to identify therapeutic targets with precision to attenuate
disease progression and uncover preventive strategies. Towards this end, we seek to leverage a mathematical
model of SARS-CoV-2-induced lung damage to predict severity of acute respiratory distress syndrome and
pulmonary fibrosis by considering key cytokine-cell interactions. We hypothesize that the model will accurately
predict quantitative changes in suites of key cytokines and matrix accumulation with varying COVID-19
progression within 10% accuracy. To accomplish this, we have assembled an investigative team at Tulane
University with key expertise in virology, clinical infectious disease research, bioinformatics, and predictive
mathematical models of tissue remodeling. In Aim 1 of the proposal, we will identify the critical cytokine
markers linked to viral-induced lung damage and pulmonary fibrosis. This will be accomplished by leveraging
machine learning to determine the biomarkers and molecular pathways characterizing progression of severe
COVID-19 to focus model formulation. In Aim 2, we will predict the severity of COVID-19 in older patients.
Model predictions will be compared to blood markers of COVID-19 disease in cohorts of older patients at
different stages of disease progression. The model will be refined and informed by cytokine data to discern
causal biological pathways and disease processes that can be tested and targeted. Our expected outcome is
to have determined the critical cytokine interactions responsible for lung tissue damage and dictating pathways
for varying disease trajectories in older patients. These results are expected to have an important impact as
the proposed predictive model will open new avenues of research to rationally design pharmaceutical
interventions for severe COVID-19 patients. Specifically, the study will provide a paradigm-shifting open-source
tool to delineate target therapeutics, estimate their efficacy, and move towards development of patient-specific
treatment plans for older individuals.
该提案的目的是开发一个预测模型来识别感染者
SARS-CoV-2 并有发展为严重 COVID-19 的风险。路易斯安那州的人均死亡率排名第五
截至 2020 年 5 月 4 日的美国。严重疾病常见于老年人和患有潜在疾病的人
状况。新奥尔良人口特别容易感染严重的 COVID-19,如高血压、
糖尿病和肥胖症十分猖獗。感染后,病毒引起的急性肺损伤必须修复
恢复肺功能,避免急性呼吸窘迫综合征和肺纤维化。越来越多的证据
表明重症 COVID-19 患者患有细胞因子风暴综合征,这可能会加剧
多器官损伤和纤维化并发症的风险。缺乏有效的方法来识别和减轻严重的
由于对细胞因子的生物学途径了解有限,COVID-19 的进展持续存在
风暴综合症和老年患者的风险增加。因此,需要确定临界值
导致 COVID-19 严重进展的细胞因子谱,以开发有效的治疗方法。进一步地,它是
找到一种方法来分期疾病轨迹以精确识别治疗靶点以减轻影响至关重要
疾病进展并揭示预防策略。为此,我们寻求利用数学方法
SARS-CoV-2 诱导的肺损伤模型可预测急性呼吸窘迫综合征的严重程度
通过考虑关键的细胞因子-细胞相互作用来研究肺纤维化。我们假设该模型将准确地
预测关键细胞因子套件和基质积累随不同 COVID-19 的数量变化
进展精度在 10% 以内。为了实现这一目标,我们在杜兰大学组建了一个调查小组
大学在病毒学、临床传染病研究、生物信息学和预测方面拥有关键专业知识
组织重塑的数学模型。在提案的目标 1 中,我们将确定关键的细胞因子
与病毒引起的肺损伤和肺纤维化相关的标记物。这将通过利用
机器学习来确定表征严重疾病进展的生物标志物和分子途径
COVID-19 聚焦模型制定。在目标 2 中,我们将预测老年患者中 COVID-19 的严重程度。
模型预测将与老年患者队列中的 COVID-19 疾病血液标志物进行比较
疾病进展的不同阶段。该模型将通过细胞因子数据进行完善和告知,以辨别
可以测试和瞄准的因果生物学途径和疾病过程。我们的预期结果是
确定导致肺组织损伤和决定途径的关键细胞因子相互作用
针对老年患者不同的疾病轨迹。这些结果预计将产生重要影响
所提出的预测模型将为合理设计药物开辟新的研究途径
针对重症 COVID-19 患者的干预措施。具体来说,该研究将提供一种范式转变的开源
描述目标治疗方法、评估其疗效并朝着针对患者具体情况进行开发的工具
老年人的治疗计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
S MICHAL JAZWINSKI其他文献
S MICHAL JAZWINSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('S MICHAL JAZWINSKI', 18)}}的其他基金
Mentoring Research Excellence in Aging and Regenerative Medicine
指导衰老和再生医学领域的卓越研究
- 批准号:
10414530 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Estrogenic Component of the Vascular Etiology of Alzheimer's Disease
阿尔茨海默病血管病因学中的雌激素成分
- 批准号:
10713773 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Mentoring Research Excellence in Aging and Regenerative Medicine
指导衰老和再生医学领域的卓越研究
- 批准号:
10851107 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Mentoring Research Excellence in Aging and Regenerative Medicine
指导衰老和再生医学领域的卓越研究
- 批准号:
10631197 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Enhancing the Impact of the COBRE in Aging and Regenerative Medicine at Tulane
增强 COBRE 在杜兰大学衰老和再生医学领域的影响
- 批准号:
10792387 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Mentoring Research Excellence in Aging and Regenerative Medicine
指导衰老和再生医学领域的卓越研究
- 批准号:
8216563 - 财政年份:2012
- 资助金额:
$ 37.99万 - 项目类别:
相似国自然基金
ANXA3调控肺微血管内皮细胞通透性在脓毒症急性肺损伤中的作用及机制研究
- 批准号:82372180
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PDHA1介导中性粒细胞NETosis在急性肺损伤中的作用及机制研究
- 批准号:82370086
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“糖原合成-UDPG/P2Y14/STAT1-肺泡巨噬细胞M1型极化”途径探讨热炎宁合剂治疗急性肺损伤的作用机制
- 批准号:82374418
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
复方臭灵丹合剂调控TLR4/PI3K信号通路缓解急性肺损伤的机制研究
- 批准号:82360844
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于“肺与大肠相表里”理论探究气虚体质促进内毒素急性肺损伤的分子机制及补中益气丸的保护作用
- 批准号:82305059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Supplemental Citicoline Administration for Reduction of Lung Injury Efficacy Trial (SCARLET)
补充胞二磷胆碱减少肺损伤疗效试验(SCARLET)
- 批准号:
10406027 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Supplemental Citicoline Administration for Reduction of Lung Injury Efficacy Trial (SCARLET)
补充胞二磷胆碱减少肺损伤疗效试验(SCARLET)
- 批准号:
10657726 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Treatment of Inflammatory Complications of Viral Pneumonia
病毒性肺炎炎症并发症的治疗
- 批准号:
10383991 - 财政年份:2022
- 资助金额:
$ 37.99万 - 项目类别:
Mechanistic characterization of SARS-CoV2 associated kidney injury
SARS-CoV2相关肾损伤的机制特征
- 批准号:
10319713 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别:
Preclinical development of an immunomodulatory agent capable of mitigating SARS-CoV-2 virus related hypercytokinemia
能够减轻 SARS-CoV-2 病毒相关高细胞因子血症的免疫调节剂的临床前开发
- 批准号:
10155839 - 财政年份:2021
- 资助金额:
$ 37.99万 - 项目类别: