Reading workstation for clinical contrast echocardiography
临床造影超声心动图读取工作站
基本信息
- 批准号:10155647
- 负责人:
- 金额:$ 25.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAmericanAnatomyAngiographyApicalBenignBloodBlood Flow VelocityCardiacCardiomyopathiesCardiovascular systemChest PainClassificationClinicalClinical ResearchClipCodeColorComputer AssistedComputer softwareComputersContrast EchocardiographyContrast MediaCoronaryCoronary ArteriosclerosisDataDiagnosisDiagnosticDiseaseEchocardiographyEngineeringEvaluationEventEyeFemaleGuidelinesImageImaging TechniquesMachine LearningMechanicsMedicalMethodsMicrocirculationMicrovascular DysfunctionMyocardialMyocardial IschemiaMyocardial perfusionNamesPatientsPerformancePerfusionPhasePhysiciansProcessRadialReaderReadingRecommendationRestScientistSideSocietiesSoftware EngineeringStandardizationStressSyndromeTechniquesTechnologyThickTimeTrainingUltrasonographyVendorVisualarteriolebaseclinical Diagnosisendothelial dysfunctionimage processingimaging softwareindexingmultidisciplinaryneural networknovelparametric imagingperfusion imagingprognosticprogramssample archivesingle photon emission computed tomographystandard of caretooluser-friendly
项目摘要
Proposal Summary
There is increasing appreciation of a syndrome in which patients female patients, present with chest
pain due to myocardial ischemia and have a normal or near normal coronary angiogram. Termed
coronary microvascular dysfunction (MVD) this disorder is not benign with cardiovascular event rates
similar to those with established coronary artery disease. Clinical tools are therefore needed to both
identify MVD patients and better understand the mechanisms causing myocardial ischemia. There is
evidence that myocardial contrast echocardiography (MCE) provides incremental information in the
evaluation of patients with coronary artery disease, myocardial viability, or diseases of the
microvasculature. Despite data demonstrating the diagnostic and prognostic benefit of MCE in
evaluating patients with MVD, its clinical use has been limited to only a handful of experts in the field,
because there are currently no widely available clinical tools to support MCE quantitative analysis and
interpretation. The overall aim of this Phase I proposal is to provide clinicians with a new tool to
evaluate the myocardial flow-function relationship that is critical to identifying patients with MVD by
using echocardiography. We will develop clinical software that can rapidly process MCE data into a
standardized, quantitative and easy- to- interpret format. In Aim 1, the power of image averaging and
computer aided assessment of radial wall thickening will be used to enhance the current standard of care
which relies solely on readers' visual estimation of segmental function. An algorithm will be developed to
rearrange the order of images so that images representing the same phase of the cardiac cycle are
grouped together. Functional analysis will then be developed using computer-aided tracings of epicardial
and endocardial borders. In Aim 2, a software module for quantitative analysis of real-time MCE
perfusion will be developed that will incorporate statistical confidence, derived from the performance of
image processing algorithms to inform the interpreter about the data strength. Machine learning will be
utilized to train and deploy a neural network for the pixel-by-pixel assessment of myocardial perfusion.
In Aim 3, we will combine myocardial perfusion and function modules into a novel, perfusion-function
mode of imaging (PF-mode). This new mode will be applied to an archival sample of clinically diagnosed
MVD cases to demonstrate the feasibility to detect abnormalities in the myocardial flow-function
relationship. The composite PF-mode will include a cine-loop rendered for one cardiac cycle where
parametric images (perfusion) are superimposed over averaged ultrasound images with an overlay of
graphic representation of wall thickness (function). This novel mode of imaging provides the means to
diagnose MVD in a single clinical study.
提案摘要
人们越来越认识到一种女性患者出现胸部症状的综合征
心肌缺血引起的疼痛,冠状动脉造影正常或接近正常。术语
冠状动脉微血管功能障碍 (MVD) 这种疾病对于心血管事件发生率来说不是良性的
与患有冠状动脉疾病的人相似。因此,两者都需要临床工具
识别 MVD 患者并更好地了解引起心肌缺血的机制。有
有证据表明,心肌造影超声心动图 (MCE) 可提供增量信息
评估患有冠状动脉疾病、心肌活力或其他疾病的患者
微血管系统。尽管数据表明 MCE 在诊断和预后方面具有优势
评估 MVD 患者时,其临床应用仅限于该领域的少数专家,
因为目前还没有广泛可用的临床工具来支持 MCE 定量分析和
解释。第一阶段提案的总体目标是为临床医生提供一种新工具
评估心肌血流功能关系,这对于识别 MVD 患者至关重要
使用超声心动图。我们将开发能够快速将 MCE 数据处理为
标准化、定量且易于解释的格式。在目标 1 中,图像平均和
将使用计算机辅助评估桡骨增厚来提高当前的护理标准
它完全依赖于读者对分段功能的视觉估计。将开发一种算法
重新排列图像的顺序,以便代表心动周期相同阶段的图像
分组在一起。然后将使用计算机辅助的心外膜追踪进行功能分析
和心内膜边界。在目标2中,用于实时MCE定量分析的软件模块
将开发灌注,其中将纳入统计置信度,该统计置信度来自于性能
图像处理算法告知解释器数据强度。机器学习将
用于训练和部署神经网络,以逐像素评估心肌灌注。
在目标 3 中,我们将把心肌灌注和功能模块结合成一种新颖的灌注功能
成像模式(PF 模式)。这种新模式将应用于临床诊断的档案样本
MVD 案例证明检测心肌血流功能异常的可行性
关系。复合 PF 模式将包括为一个心动周期渲染的电影循环,其中
参数图像(灌注)叠加在平均超声图像上,叠加
壁厚的图形表示(函数)。这种新颖的成像模式提供了
在单一临床研究中诊断 MVD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Perez Davidson其他文献
Brian Perez Davidson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 25.24万 - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 25.24万 - 项目类别:
Connecting Latinos en Pareja: A Couples-based HIV Prevention Intervention for Latino Male Couples
连接拉丁裔与帕雷哈:针对拉丁裔男性夫妇的基于夫妇的艾滋病毒预防干预措施
- 批准号:
10706860 - 财政年份:2023
- 资助金额:
$ 25.24万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 25.24万 - 项目类别:
mAnaging siCkle CELl disease through incReased AdopTion of hydroxyurEa in Nigeria (ACCELERATE)
在尼日利亚通过增加羟基脲的使用来控制镰状细胞病(加速)
- 批准号:
10638598 - 财政年份:2023
- 资助金额:
$ 25.24万 - 项目类别: