Mechanisms linking replication stress to genome instability in fission yeast
裂殖酵母中复制应激与基因组不稳定性的联系机制
基本信息
- 批准号:10595031
- 负责人:
- 金额:$ 70.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAgingBiologicalBiologyCell modelCell physiologyCellsCellular biologyCentromereCharacteristicsChromosomal StabilityChromosome Fragile SitesChromosome SegregationChromosome StructuresChromosomesCongenital AbnormalityCytoprotectionDNADNA RepairDNA SequenceDNA biosynthesisDNA replication forkDataDefectDevelopmentDiseaseEnsureEukaryotic CellEventFission YeastGenesGeneticGenetic ModelsGenome StabilityGenomic InstabilityGoalsHealthHumanInfertilityLinkMalignant NeoplasmsMeiosisMitosisMolecularNeurologicNormal CellOrganismPathologyPathway interactionsPhaseProteinsResolutionRibosomal DNARisk FactorsRoleStressStructureSystems BiologyYeastsbiomarker identificationdevelopmental diseasegene discoverygenetic informationhuman diseaselive cell imagingmutantnervous system disordernovelpreservationpreventrepairedreplication stressresponsetooltransmission process
项目摘要
Genome instability refers to changes in chromosome sequence, structure, or number that affect
normal cell function. Such instability is characteristic of cancer, as well as certain developmental and
neurological defects, and aging. Data from multiple organisms suggests that DNA replication stress is a
key contributor to genome instability. Mechanisms that stabilize replication forks, prevent abnormal
divisions, and promote DNA repair are a primary barrier to disease; therefore, understanding their
function and the consequences of their disruption has direct relevance to human health.
This proposal employs an established model cell biology system, the fission yeast S. pombe,
to characterize how living cells respond to replication stress. S. pombe is a well-established genetic
model for chromosome biology that shares many features with human cells. Significantly, nearly all the
genes under study have orthologues in humans that have been associated with disease..
A key aspect of the approach is to use live cell imaging to characterize the response to
replication stress and characterize its long term consequences. The overarching goal is to understand
the dynamics of replication stress and its resolution in normal and mutant cells. This includes
determining how the cell deploys molecular mechanisms to allow damage resolution and ensure
chromosome segregations. We address the cellular and genetic consequences of division under
stress; investigate how replication occurs late in G2 or mitosis to facilitate resolution; and examine the
three-dimensional organization of repair structures. We have previously shown that the pericentromere
is a fragile site, and we have expanded that to examine the ribosomal DNA and the role of phase
separation in contributing to gene integrity, as well as identification of other fragile regions. A novel
component is the analysis of replication stress during meiosis as a contributor to chromosome
rearrangements associated with birth defects and infertility.
By combining this cell biological approach with superb yeast gene-discovery tools, and
identifying the molecular events that lead to abnormal divisions and further stress, this project tackles a
critical gap in current understanding. What are the pathways that contribute to different responses to
stress and their associated pathologies and how do they affect the biology of living cells? Together,
these studies provide a holistic picture of how conserved proteins interact to maintain genome stability
in a eukaryotic cell, identifying markers and risk factors for human disease.
基因组不稳定性是指影响染色体序列、结构或数量的变化。
正常的细胞功能。这种不稳定性是癌症的特征,也是某些发育和
神经系统缺陷和衰老。来自多个生物体的数据表明 DNA 复制压力是
基因组不稳定的关键因素。稳定复制叉、防止异常的机制
分裂和促进 DNA 修复是疾病的主要屏障;因此,了解他们的
其功能及其破坏的后果与人类健康直接相关。
该提案采用了已建立的模型细胞生物学系统,即裂殖酵母 S. pombe,
表征活细胞如何响应复制压力。粟酒裂殖酵母是一种成熟的遗传
与人类细胞具有许多共同特征的染色体生物学模型。值得注意的是,几乎所有
正在研究的基因在人类中具有与疾病相关的直系同源物。
该方法的一个关键方面是使用活细胞成像来表征对
复制压力并描述其长期后果。总体目标是了解
正常和突变细胞中复制应激的动态及其解决。这包括
确定细胞如何部署分子机制来解决损伤并确保
染色体分离。我们解决分裂的细胞和遗传后果
压力;研究复制如何在 G2 晚期或有丝分裂中发生以促进解决;并检查
修复结构的三维组织。我们之前已经表明,着丝粒周围
是一个脆弱位点,我们已将其扩展以检查核糖体 DNA 和相的作用
分离有助于基因完整性,以及识别其他脆弱区域。一本小说
成分是减数分裂过程中复制应激作为染色体贡献者的分析
与出生缺陷和不孕症相关的重排。
通过将这种细胞生物学方法与卓越的酵母基因发现工具相结合,
该项目确定了导致异常分裂和进一步压力的分子事件,解决了
当前理解中的重大差距。导致不同反应的途径是什么
压力及其相关病理以及它们如何影响活细胞的生物学?一起,
这些研究提供了保守蛋白质如何相互作用以维持基因组稳定性的整体图景
在真核细胞中,识别人类疾病的标记和危险因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN L FORSBURG其他文献
SUSAN L FORSBURG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN L FORSBURG', 18)}}的其他基金
Mechanisms linking replication stress to genome instability in fission yeast
裂殖酵母中复制应激与基因组不稳定性的联系机制
- 批准号:
9893001 - 财政年份:2016
- 资助金额:
$ 70.73万 - 项目类别:
Mechanisms linking replication stress to genome instability in fission yeast
裂殖酵母中复制应激与基因组不稳定性的联系机制
- 批准号:
10404012 - 财政年份:2016
- 资助金额:
$ 70.73万 - 项目类别:
Mechanisms linking replication stress to genome instability in fission yeast
裂殖酵母中复制应激与基因组不稳定性的联系机制
- 批准号:
10205564 - 财政年份:2016
- 资助金额:
$ 70.73万 - 项目类别:
Structural instability and DNA rearrangements in the centromere
着丝粒的结构不稳定和 DNA 重排
- 批准号:
8720618 - 财政年份:2014
- 资助金额:
$ 70.73万 - 项目类别:
Structural instability and DNA rearrangements in the centromere
着丝粒的结构不稳定和 DNA 重排
- 批准号:
8840617 - 财政年份:2014
- 资助金额:
$ 70.73万 - 项目类别:
Checkpoints and Double Strand Breaks in S. Pombe Meiosis
粟酒裂殖酵母减数分裂中的检查点和双链断裂
- 批准号:
8269785 - 财政年份:2009
- 资助金额:
$ 70.73万 - 项目类别:
Checkpoints and Double Strand Breaks in S. Pombe Meiosis
粟酒裂殖酵母减数分裂中的检查点和双链断裂
- 批准号:
8499352 - 财政年份:2009
- 资助金额:
$ 70.73万 - 项目类别:
Checkpoints and double strand breaks in S. pombe meiosis
粟酒裂殖酵母减数分裂中的检查点和双链断裂
- 批准号:
7846742 - 财政年份:2009
- 资助金额:
$ 70.73万 - 项目类别:
Checkpoints and Double Strand Breaks in S. Pombe Meiosis
粟酒裂殖酵母减数分裂中的检查点和双链断裂
- 批准号:
8131567 - 财政年份:2009
- 资助金额:
$ 70.73万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 70.73万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 70.73万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 70.73万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 70.73万 - 项目类别: