Molecular and Cellular Mechanisms in Coronary Artery Development and Anomalies
冠状动脉发育和异常的分子和细胞机制
基本信息
- 批准号:10595393
- 负责人:
- 金额:$ 76.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBiological AssayBirthBreedingCardiacCellsComplementCongenital AbnormalityCoronaryCoronary CirculationCoronary Vessel AnomaliesCoronary VesselsCoronary arteryDataData AnalysesDevelopmentDiseaseEmbryoEmbryonic DevelopmentEndocardiumEndotheliumFluorescence-Activated Cell SortingGenesGeneticGoalsGrowthHeartHistologyHypoxiaImmunofluorescence ImmunologicIn Situ HybridizationIndividualInterventionKnowledgeLabelLifeMesenchymalMetabolicMolecularMusMyocardialMyocardial IschemiaMyocardiumNOTCH1 geneNamesPathogenesisPathway AnalysisPerinatalPhenotypeProcessProliferatingRegulationReporterResearch Project GrantsSignal TransductionSinusTGFB2 geneTGFBR3 geneTestingTransforming Growth Factor Beta 2VEGFA geneVascular Endothelial Growth Factor Receptor-3Vascular Endothelial Growth FactorsVascularizationVentricularVisualizationangiogenesisbiomarker validationclinically significantcombatdata integrationdifferential expressioneffective interventionexperimental studygene networkin vivoinsightloss of functionmalformationnew therapeutic targetnovel therapeuticsperinatal periodprogenitorsingle-cell RNA sequencingstem cellssudden cardiac deathtranslational medicine
项目摘要
PROJECT SUMMARY
Normal coronary artery formation is essential for heart growth and function. Malformed coronary arteries are a
clinically significant birth defect that can cause life-threatening cardiac complications, including ventricular
noncompaction, myocardial ischemia, and sudden cardiac death. Yet, developmental mechanisms that drive
proper coronary artery formation are incompletely understood, which has hindered our ability to develop the
heart-specific interventions for this devastating disease. The long-term goal of this project is therefore to reveal
the molecular and cellular mechanisms underlying coronary artery development so that we may identify key
regulatory factors for developing new targeted therapies to combat this congenital condition. We have addressed
this goal during previous finding period. Our studies have shown that embryonic coronary arteries in the inner
compact myocardium are formed by ventricular endocardial cells through angiogenesis regulated by the VEGF-
NOTCH signaling. Furthermore, our studies have revealed that these embryonic coronary arteries undergo
angiogenic expansion perinatally to add the neovessels to the growing compact myocardium. However, in
contrast to the vascularization of the compact myocardium, we know little about vascularization of trabecular
myocardium which remains largely avascular until birth. We have recently identified a subpopulation of coronary
progenitor cells among ventricular endocardial cells which are committed to the coronary arteries in the
trabecular myocardium. We named these cells as the second wave coronary progenitors (SCPs) to separate
them from the first wave coronary progenitors (FCPs) for the coronary vessels at the compact myocardium.
SCPs acquire angiogenic potential earlier in embryonic development through a previously unknown endocardial
to mesenchymal transformation (EMT) long before they undergo angiogenesis later during perinatal periods to
vascularize the trabecular myocardium. In this renewal application, we propose to characterize this new
angiogenic-EMT paradigm (angioEMT) by SCPs. Our overarching hypothesis is that vascularization of trabecular
myocardium by SCPs is regulated by a “two-hit” mechanism involving sequential angioEMT and hypoxia
signaling. We plan to test this hypothesis in three Specific Aims. Aim 1 will characterize SCPs by distinguishing
them from FCPs using a lineage-based single cell RNA-sequencing (scRNA-seq) analysis and a modified
functional angioEMT assay. Aim 2 will define the angioEMT signaling in the early fate decision by SCPs using
genetic loss-of-function approaches investigating the TGFb signaling. Aim 3 will decipher the angiogenic
signaling in the later angiogenic activation of SCPs focusing on VEGFA-VEGFR3 and DLL4-NOTCH1 signaling.
Vascularization of trabecular myocardium as well as trabecular compaction in the individual nulls will be
examined by histology, immunostaining, and RNAscope in situ hybridization. The changes in the SCP lineages
will be determined by scRNA-seq analysis, whereas the key factors underlying the two-hit angioEMT process
will be identified through gene network analysis. By completing these aims, we expect to provide new
mechanistic insights into coronary artery development that inform developmental pathogenesis of coronary
artery anomalies and ventricular noncompaction.
项目摘要
正常的冠状动脉形成对于心脏的生长和功能至关重要。
临床上显着的先天缺陷导致威胁生命的CardiACC并发症,包括心室
不采用,心肌缺血和toden心脏死亡。
正确理解了正确的冠状动脉形成,这阻碍了我们发展的能力
毁灭性疾病的心脏特异性干预措施。
冠状动脉发育的基础分子和细胞机制,因此被鉴定
我们已经解决了新的目标疗法的调节因素
我们的研究期间的这个目标表明内部的胚胎冠状动脉改变
紧凑型心肌是由心室心内膜细胞通过VEGF-的血管生成形成的
Notch信号传导。
血管生成的膨胀是将新精灵添加到不断增长的紧凑型心肌中
与紧凑型心肌的血管形成对比,我们对小径的血管化知之甚少
直到出生的心肌仍然是较大的疾病。
心室心内膜细胞中的祖细胞,这些细胞是脚趾冠状者的
小梁心肌。
它们是紧凑型心肌处的冠状动脉血管的第一波冠状动脉祖细胞(FCP)。
SCP通过先前未知的心内膜发育中获得胚胎发育中的血管生成潜力
在间充质转化(EMT)之前很早就在围产期发生血管生成
在此续签应用中,我们的血管心肌使您的心肌表征
SCPS的血管生成 - EMT范式(血管头)。
SCPS的心肌由“两击”机理互为序列血管头和缺氧定制
信号。
它们使用基于谱系的单个Celle celle celle celle celle celle celle Celle(SCRNA-SEQ)分析和修改
功能性Angioeemt分析将在SCP的早期命运决定中定义
遗传功能丧失方法研究了TGFB信号3。
SCP的后来血管生成激活中的信号传导,重点是VEGFA-VEGFR3和DLL4-NOTCH1信号传导。
小梁心肌的血管化以及单个无效的小梁压实将是
通过组织学,免疫抑制和原位杂交检查。
将通过SCRNA-seq分析确定,而两击血管内过程的关键因素
将通过基因网络分析来确定。
对冠状动脉开发的机械洞察力,为冠状动脉发育发育提供了信息
动脉异常和心室不合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BIN ZHOU其他文献
BIN ZHOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BIN ZHOU', 18)}}的其他基金
Molecular signaling in aortic valve development and congenital aortic valve defect
主动脉瓣发育和先天性主动脉瓣缺陷的分子信号传导
- 批准号:
10544023 - 财政年份:2022
- 资助金额:
$ 76.48万 - 项目类别:
Molecular signaling in aortic valve development and congenital aortic valve defect
主动脉瓣发育和先天性主动脉瓣缺陷的分子信号传导
- 批准号:
10364556 - 财政年份:2022
- 资助金额:
$ 76.48万 - 项目类别:
Control of cardiomyocyte cell cycle by REST in heart failure and regeneration
通过 REST 控制心力衰竭和再生中的心肌细胞周期
- 批准号:
10215615 - 财政年份:2020
- 资助金额:
$ 76.48万 - 项目类别:
Control of cardiomyocyte cell cycle by REST in heart failure and regeneration
通过 REST 控制心力衰竭和再生中的心肌细胞周期
- 批准号:
10052875 - 财政年份:2020
- 资助金额:
$ 76.48万 - 项目类别:
Control of cardiomyocyte cell cycle by REST in heart failure and regeneration
通过 REST 控制心力衰竭和再生中的心肌细胞周期
- 批准号:
10397428 - 财政年份:2020
- 资助金额:
$ 76.48万 - 项目类别:
Control of cardiomyocyte cell cycle by REST in heart failure and regeneration
通过 REST 控制心力衰竭和再生中的心肌细胞周期
- 批准号:
10604334 - 财政年份:2020
- 资助金额:
$ 76.48万 - 项目类别:
Single Cell RNA-seq to Identify Endocardial Ontogenic Factors for the Heart
单细胞 RNA-seq 鉴定心脏的心内膜个体发育因子
- 批准号:
9769109 - 财政年份:2018
- 资助金额:
$ 76.48万 - 项目类别:
Deciphering the roles of Nfatc1 in developmental coronary angiogenesis
解读 Nfatc1 在发育性冠状动脉血管生成中的作用
- 批准号:
9276779 - 财政年份:2016
- 资助金额:
$ 76.48万 - 项目类别:
Deciphering the roles of Nfatc1 in developmental coronary angiogenesis
解读 Nfatc1 在发育性冠状动脉血管生成中的作用
- 批准号:
9160568 - 财政年份:2016
- 资助金额:
$ 76.48万 - 项目类别:
Mechanisms of Coronary Ostium Formation and Coronary Artery Patterning
冠状动脉口形成和冠状动脉模式的机制
- 批准号:
8580415 - 财政年份:2013
- 资助金额:
$ 76.48万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 76.48万 - 项目类别:
The role and mechanism of RNA m6A modification in the pathogenesis and drug-resistance of prostate cancer
RNA m6A修饰在前列腺癌发病及耐药中的作用及机制
- 批准号:
10638634 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
A role for cardiomyocyte pannexin 1 in non-ischemic heart failure
心肌细胞pannexin 1在非缺血性心力衰竭中的作用
- 批准号:
10680109 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别: