Using Big-Data to Identify & Prevent Transmission of Carbapenem-Resistant Enterobacteriaceae within VHA
利用大数据进行识别
基本信息
- 批准号:10595493
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAntibiotic ResistanceAntibiotic TherapyAntibiotic-resistant organismAntibioticsAntimicrobial ResistanceAreaAwarenessBacteriaBacterial Antibiotic ResistanceBig DataBig Data MethodsBioinformaticsBiometryBoard CertificationCarbapenemsCategoriesCeftazidimeCenters for Disease Control and Prevention (U.S.)Cessation of lifeClinicalClinical TrialsClostridium difficileCombined AntibioticsCombined Modality TherapyCommunicable DiseasesComplexDangerousnessDataData ScienceDatabasesDedicationsDisease OutbreaksDoctor of PhilosophyEducational StatusEffectivenessEnterobacter cloacaeEnterobacteriaceae InfectionsEnvironmentExclusionFacultyFormulariesFosteringFutureGram-Negative BacteriaGuidelinesHealthHealth Care CostsHealth care facilityHospitalizationHospitalsIndividualInfectionInfection preventionInstitutionInterventionJunior PhysicianK-Series Research Career ProgramsKlebsiella pneumoniaeKnowledgeLeadMaster of ScienceMathematicsMeasuresMedical centerMedicineMentorsMeropenemMicrobiologyModelingMorbidity - disease rateOncologyOutcomePatientsPerformancePersonsPhysiciansPilot ProjectsPopulationPrevalencePreventionPrevention programProductivityPublic HealthPublicationsPublishingRecording of previous eventsRegimenReportingResearchResearch PersonnelResearch PriorityResistanceRiskRisk FactorsSafetyScientistSepsisSpecialistStatistical ModelsSystems BiologyTechniquesTestingTrainingTreatment outcomeUnited StatesUnited States Department of Veterans AffairsVeteransVeterans Health AdministrationVirulence FactorsWorkacute careantibiotic resistant infectionscarbapenem resistancecarbapenem-resistant Enterobacteriaceaecarbapenemasecareerclinical riskcollegecombatcomorbiditycomputer programdesignevidence baseexperiencehigh riskimprovedinnovationmicrobial genomicsmid-career facultymilitary veteranmortalitymulti-drug resistant pathogennephrotoxicitynovelototoxicitypost-doctoral trainingpredictive toolspreventprospectiveresistant Klebsiella pneumoniaerisk stratificationscreeningside effectskillsstatisticssuccesssurveillance strategytooltransmission processvirus related cancer
项目摘要
This proposal is designed to provide the necessary knowledge, skills, and experience required to
facilitate the transition of Andrew Chou, MD, from junior to independent investigator in the field of antibiotic-
resistant infections. Dr. Chou is a well-trained infectious diseases specialist with graduate-level education and
postdoctoral training in microbiology and microbial genomics. He has been studying multidrug-resistant
organisms (MDRO) since 2009 and has a demonstrated history of dedication to a career in research and to the
Veterans Health Administration (VHA). Dr. Chou has identified a mentoring committee consisting of senior
investigators who have demonstrated success in mentoring junior investigators to independence. Barbara W.
Trautner, MD, PhD, associate professor of Medicine (Infectious Diseases) and faculty at the Center for
Innovations in Quality, Effectiveness, and Safety (IQuESt) at the Houston VA and Baylor College of Medicine
(BCM), will serve as the primary mentor. The co-mentors are: 1) Lynn Zechiedrich, PhD, an expert in
mechanisms of antibiotic resistance and systems biology; 2) Elizabeth Chiao, MD, MPH, an expert in using
large databases to study viral-associated malignancies and board-certified in both infectious diseases and
oncology; 3) Richard Sucgang, PhD, an expert in bioinformatics of antibiotic resistance; and 4) Peter
Richardson, PhD, an expert in mathematical statistics and probability modeling. Dr. Chou has a history of
productivity with the primary mentor and multiple co-mentors, including publications in studying Klebsiella
pneumoniae virulence factors within VHA, bloodstream infections due to gram-negative bacteria, and an
outbreak of carbapenem-resistant Enterobacteriaceae (CRE). To expand his skill set, Dr. Chou will pursue a
Master of Science in biostatistics, studying the data science track and biostatistics.
Antibiotic resistance is an important health concern in the United States and within VHA. CRE is 1 of
the most dangerous antibiotic-resistant organisms because nearly half of all patients with CRE bloodstream
infections die. CRE infections are resistant to all or nearly all antibiotics, often are treated with last-line
antibiotics that are associated with severe side-effects, and can lead to hospital outbreaks.
CRE infections incur significant morbidity and mortality, yet optimal prevention and treatment of CRE
are unknown. The published report, Establishing the Research Agenda for Preventing Transmission of MDRO
in Acute-Care Settings in VHA, identified studying screening strategies to identify Veterans asymptomatically
colonized with CRE as a research priority. Determining the optimum treatment of CRE is challenging because
patients with CRE infections often have complex comorbidities that exclude them from clinical trials.
The project objective is to combat CRE within VHA by (1) developing novel, targeted surveillance
strategies that identify Veterans at high risk for CRE colonization; and (2) identifying which antibiotic regimens
are associated with the most desirable clinical outcomes (ie, clinical cure without adverse events) in Veterans
with CRE infections. Aim 1 will create the VHA CRE colonization risk-stratification tool for the national VHA
population using bioinformatics to analyze large-scale clinical VHA databases. Aim 2 will develop best
practices for treatment of CRE bloodstream infection by applying biostatistical techniques to VHA databases to
compare newer antibiotics to standard therapy, monotherapy vs. combination antibiotic therapy, and short-
course vs. prolonged-course duration of antibiotic therapy. Aim 3 will be to conduct a pilot intervention of 3
different CRE surveillance strategies: passive surveillance, surveillance targeted by clinical risk factors, and
surveillance targeted to patients with Clostridioides difficile infection.
The environment at BCM is ideal for fostering the training of junior physician investigators. Dr. Chou will
benefit from strong institutional support, outstanding mentoring, and a clear path to independence.
该提案旨在提供必要的知识、技能和经验
促进安德鲁·周(Andrew Chou)医学博士从抗生素领域的初级研究员转变为独立研究员-
耐药感染。周博士是一位训练有素的传染病专家,拥有研究生学历和
微生物学和微生物基因组学博士后培训。他一直在研究多重耐药性
自 2009 年以来,一直致力于生物体(MDRO),并拥有致力于研究事业和
退伍军人健康管理局 (VHA)。周博士指定了一个由资深人士组成的指导委员会
在指导初级调查员独立方面取得成功的调查员。芭芭拉·W.
Trautner,医学博士、哲学博士、医学副教授(传染病)和该中心的教员
休斯敦退伍军人管理局和贝勒医学院的质量、有效性和安全性创新 (IQuESt)
(BCM),将担任主要导师。共同导师是: 1) Lynn Zechiedrich 博士,一位
抗生素耐药性机制和系统生物学; 2) Elizabeth Chiao,医学博士,公共卫生硕士,使用专家
用于研究病毒相关恶性肿瘤的大型数据库,并在传染病和传染病方面经过委员会认证
肿瘤学; 3)Richard Sucgang,博士,抗生素耐药性生物信息学专家; 4)彼得
理查森博士,数理统计和概率建模专家。周医生有以下病史:
主要导师和多个共同导师的生产力,包括研究克雷伯氏菌的出版物
VHA 内的肺炎链球菌毒力因子、革兰氏阴性菌引起的血流感染以及
耐碳青霉烯类肠杆菌科细菌(CRE)的爆发。为了扩展他的技能,周博士将追求
生物统计学理学硕士,研究数据科学轨道和生物统计学。
抗生素耐药性是美国和 VHA 内部的一个重要健康问题。商业地产是 1
最危险的抗生素抗药性微生物,因为近一半的 CRE 患者血液中存在
感染死亡。 CRE 感染对所有或几乎所有抗生素均具有耐药性,通常采用最后一线治疗
抗生素会带来严重的副作用,并可能导致医院爆发疫情。
CRE 感染会导致显着的发病率和死亡率,但 CRE 的最佳预防和治疗
未知。已发表的报告《制定预防多重耐药菌传播的研究议程》
在 VHA 的急性护理环境中,确定了研究筛查策略以识别无症状退伍军人
以 CRE 作为研究重点。确定 CRE 的最佳治疗方法具有挑战性,因为
CRE 感染患者通常有复杂的合并症,使他们无法参加临床试验。
该项目的目标是通过 (1) 开发新颖的、有针对性的监视来打击 VHA 内的 CRE
识别 CRE 定植高风险退伍军人的策略; (2) 确定哪些抗生素治疗方案
与退伍军人最理想的临床结果(即无不良事件的临床治愈)相关
患有 CRE 感染。目标 1 将为国家 VHA 创建 VHA CRE 定植风险分层工具
使用生物信息学分析大规模临床 VHA 数据库的人群。目标2将发展得最好
通过将生物统计技术应用于 VHA 数据库来治疗 CRE 血流感染的实践
将新型抗生素与标准疗法、单一疗法与联合抗生素疗法以及短期疗法进行比较
抗生素治疗的疗程与长疗程持续时间。目标 3 将是进行 3 项试点干预
不同的 CRE 监测策略:被动监测、针对临床危险因素的监测,以及
针对艰难梭菌感染患者的监测。
BCM 的环境非常适合培养初级医师研究人员。周博士将
受益于强大的机构支持、出色的指导和清晰的独立之路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Chou其他文献
Andrew Chou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Chou', 18)}}的其他基金
Using Big-Data to Identify & Prevent Transmission of Carbapenem-Resistant Enterobacteriaceae within VHA
利用大数据进行识别
- 批准号:
10295148 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Using Big-Data to Identify & Prevent Transmission of Carbapenem-Resistant Enterobacteriaceae within VHA
利用大数据进行识别
- 批准号:
10041694 - 财政年份:2019
- 资助金额:
-- - 项目类别:
相似国自然基金
高级还原预处理对水中卤代抗生素抗性风险的削减机制研究
- 批准号:52300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
亚南极菲尔德斯半岛地区抗生素抗性的传播转移、来源解析和历史演替
- 批准号:42376234
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于真菌的跨界群体感应干扰对水环境抗生素抗性基因传播的影响及调控研究
- 批准号:42307159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
- 批准号:
10699065 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Randomized Pilot and Feasibility Study of a cultuRE-Directed approach to Urinary traCT Infection symptoms in older womeN: a mixed methods evaluation - the REDUCTION trial
针对老年女性尿路感染症状的文化导向方法的随机试验和可行性研究:混合方法评估 - REDUCTION 试验
- 批准号:
10586250 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Personalized Antibiotic Therapy in the Emergency Department: PANTHER Trial
急诊科的个性化抗生素治疗:PANTHER 试验
- 批准号:
10645528 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Randomized Controlled Trial of Macrolide Therapy for Mycoplasma pneumoniae
大环内酯类药物治疗肺炎支原体的随机对照试验
- 批准号:
10620551 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying Optimal Antibiotic Regimens to Treat Urinary Tract Infections During Pregnancy
确定治疗妊娠期尿路感染的最佳抗生素方案
- 批准号:
10522361 - 财政年份:2022
- 资助金额:
-- - 项目类别: