A transmembrane Rab GTPase accelerating protein targeted to peroxisomes
一种针对过氧化物酶体的跨膜 Rab GTP 酶加速蛋白
基本信息
- 批准号:10595549
- 负责人:
- 金额:$ 14.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAffinityAllelesAreaAutophagocytosisBindingBiochemicalBiological AssayCardiovascular DiseasesCardiovascular systemCellsCellular biologyClientCoupledCritical PathwaysDevelopmentDiseaseDockingEndoplasmic ReticulumEnzymesEukaryotic CellExerciseFamilyFluorescence MicroscopyGTP BindingGenesGoalsGolgi ApparatusGrowthGuanosine Triphosphate PhosphohydrolasesHealthHumanImaging TechniquesIntegral Membrane ProteinKineticsLipidsMaintenanceMapsMass Spectrum AnalysisMembraneMembrane FusionMetabolic DiseasesMetabolic PathwayMetabolismMicroscopicMitochondriaMitochondrial Membrane ProteinMolecularMolecular ChaperonesMorphologyMutagensMutationNerve DegenerationNeurodegenerative DisordersOrganellesOrganismOrthologous GeneOutcomes ResearchPathway interactionsPhenotypePlayProcessProteinsProteomicsQuality ControlRegulationReportingResearchResourcesRoleSaccharomyces cerevisiaeSignal TransductionSignaling ProteinSourceStimulusStressSynthetic GenesSystems BiologyTechnologyTestingTherapeutic InterventionTimeToxic effectTransmembrane TransportVesicleYeastsage relatedbiological adaptation to stresselectron tomographyin vivoinnovationlipid metabolismmembrane biogenesisperoxisomepreventprogramsrab GTP-Binding Proteinsrepairedresponsespatiotemporaltargeted treatmentvesicle transportyeast genome
项目摘要
Project Summary
Understanding how cells adapt to stress and repair damage is one of the highest priorities in cell biology and
health research. The endoplasmic reticulum (ER) is a key source of lipid and proteins for building and
maintaining several organelles in cells, and in response to stimuli it is capable of directing resources into an
assortment of transport pathways. The signaling protein Ypt1/Rab1 is a Rab GTPase (Rab) that plays
essential roles in how the ER directs resources and executes quality control of damaged organelles including
mitochondria and peroxisomes. Our long-term goal is to understand the mechanisms for how lipid and protein
cargos are routed and re-routed to specific itineraries in response to cellular stimuli and stresses, which will
inform development of targeted therapeutic interventions to address diseases. We have found that the
GTPase accelerating protein Gyp8, an evolutionarily conserved but poorly understood negative regulator of
Ypt1/Rab1 signaling, localizes to the ER, peroxisomes and mitochondria and impinges on Ypt1 signaling. Our
central hypotheses are that Gyp8 functions to modulate Ypt1/Rab1 signaling in the early secretory pathway
(ER) and at non-secretory membranes (peroxisomes and mitochondria) that are subject to frequent damage
and quality control via Ypt1/Rab1-dependent selective autophagy. Also, since Gyp8 localizes to organelles
that commonly tether/dock to exchange materials in essential metabolic pathways, we predict that Gyp8
regulates Rab-dependent tethering interactions, particularly among organelles specialized for lipid storage and
metabolism. To test our central hypotheses and advance understanding of several membrane biogenesis
pathways that originate at the ER, we will pursue these specific aims: 1) Identify intra- and extra-genic factors
that control the subcellular itinerary and activity of Gyp8; 2) Determine target Rab GTPase(s) regulated by
Gyp8 in the secretory pathway; and 3) Define the role of Gyp8 in regulating peroxisomal and mitochondrial
dynamics. The proposed research is innovative both for area of focus and technical approach. While
Ypt1/Rab1 signaling controls multiple transport pathways essential to cellular health, understanding of where
and when signal must be terminated to accomplish each of its roles is particularly incomplete. The
experimental plan combines gold standard biochemical and imaging techniques in organelle and vesicular
transport (enzyme-coupled kinetic transport assays and 3D electron tomography) with systems biology
approaches (synthetic gene array and affinity capture mass spectrometry proteomics). The proposed research
is significant because defining how Ypt1/Rab1 is regulated to support and exercise quality control of ER,
mitochondria and peroxisomes is foundational to understanding aspects of cardiovascular, neurodegenerative
and metabolic disorders.
项目概要
了解细胞如何适应压力和修复损伤是细胞生物学的最高优先事项之一
健康研究。内质网 (ER) 是脂质和蛋白质的关键来源,用于构建和
维持细胞中的多种细胞器,并且响应刺激,它能够将资源引导到
运输路径的分类。信号蛋白 Ypt1/Rab1 是一种 Rab GTPase (Rab),其作用是
急诊室在如何引导资源和对受损细胞器进行质量控制方面发挥着重要作用,包括
线粒体和过氧化物酶体。我们的长期目标是了解脂质和蛋白质如何发挥作用的机制
货物根据细胞刺激和压力被路由和重新路由到特定的行程,这将
为制定针对疾病的有针对性的治疗干预措施提供信息。我们发现
GTPase 加速蛋白 Gyp8,一种进化上保守但知之甚少的负调节因子
Ypt1/Rab1 信号传导定位于 ER、过氧化物酶体和线粒体,并影响 Ypt1 信号传导。我们的
中心假设是 Gyp8 在早期分泌途径中调节 Ypt1/Rab1 信号传导
(ER) 和经常受到损伤的非分泌膜(过氧化物酶体和线粒体)
通过 Ypt1/Rab1 依赖性选择性自噬进行质量控制。此外,由于 Gyp8 定位于细胞器
通常在重要代谢途径中连接/对接以交换物质,我们预测 Gyp8
调节 Rab 依赖性束缚相互作用,特别是专门用于脂质储存和
代谢。测试我们的中心假设并加深对几种膜生物发生的理解
起源于 ER 的途径,我们将追求以下具体目标:1)识别基因内和基因外因素
控制 Gyp8 的亚细胞行程和活性; 2) 确定受以下因素调节的目标 Rab GTPase
Gyp8 在分泌途径中; 3) 定义 Gyp8 在调节过氧化物酶体和线粒体中的作用
动力学。拟议的研究在重点领域和技术方法上均具有创新性。尽管
Ypt1/Rab1 信号传导控制对细胞健康至关重要的多种运输途径,了解在哪里
当必须终止信号来完成其每个角色时,这是特别不完整的。这
实验计划结合了细胞器和囊泡的金标准生化和成像技术
运输(酶联动力运输分析和 3D 电子断层扫描)与系统生物学
方法(合成基因阵列和亲和捕获质谱蛋白质组学)。拟议的研究
很重要,因为定义如何调节 Ypt1/Rab1 以支持和实施 ER 质量控制,
线粒体和过氧化物酶体是理解心血管、神经退行性疾病方面的基础
和代谢紊乱。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel P. Nickerson其他文献
Daniel P. Nickerson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel P. Nickerson', 18)}}的其他基金
A transmembrane Rab GTPase accelerating protein targeted to peroxisomes
一种针对过氧化物酶体的跨膜 Rab GTP 酶加速蛋白
- 批准号:
10398972 - 财政年份:2021
- 资助金额:
$ 14.7万 - 项目类别:
A transmembrane Rab GTPase accelerating protein targeted to peroxisomes
一种针对过氧化物酶体的跨膜 Rab GTP 酶加速蛋白
- 批准号:
10172761 - 财政年份:2021
- 资助金额:
$ 14.7万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别: