Validating a machine learning model of eye tracking in children with cortical visual impairment (CVI)
验证皮质视觉障碍 (CVI) 儿童眼球追踪的机器学习模型
基本信息
- 批准号:10595052
- 负责人:
- 金额:$ 23.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AblationActive LearningAdoptedAdverse effectsAgeBehaviorBiomedical EngineeringBrainCaliforniaCategoriesCharacteristicsChildChildhoodClassificationClinicClinicalClinical TrialsClinical Trials DesignClinical assessmentsCollaborationsContrast SensitivityCorneaCrowdingDataData AnalysesData ScienceData SetDeveloped CountriesDiseaseElectrophysiology (science)EnrollmentEvaluationEvidence based treatmentExhibitsEyeFoundationsFrequenciesFutureGoalsInternationalInterviewJointsK-Series Research Career ProgramsKnowledgeLaboratoriesLearningLightLongitudinal StudiesLos AngelesMachine LearningMeasuresMentored Patient-Oriented Research Career Development AwardMentorsMethodsNeural Network SimulationNeurodevelopmental DisorderNeurologicOphthalmologyOutcome MeasureParentsPatientsPediatric HospitalsProtocols documentationQuality of Life AssessmentQuality of lifeQuestionnairesResearchResearch PersonnelResolutionSaccadesSamplingSeveritiesTechniquesTechnologyTimeTrainingTranslatingUniversitiesVisionVision TestsVisualVisual AcuityVisual PathwaysVisual SystemVisual evoked cortical potentialVisual impairmentcohortcomorbiditycomputer monitorcortical visual impairmentdeep learningdeep neural networkexperiencegazelarge datasetsmachine learning modelneurodevelopmentnext generationnoveloculomotorprogramsprospectivesexsignal processingsuccesstargeted treatmenttranslational potentialvisual controlvisual dysfunctionvisual stimulusvisual tracking
项目摘要
Project summary
Cortical visual impairment (CVI) is the leading cause of pediatric visual impairment in developed countries. There
is no evidence-based treatment, and design of clinical trials is hampered by the absence of a validated method
of visual assessment that captures the numerous aspects of visual function that are compromised in pediatric
CVI. Our laboratory is investigating the use of eye tracking in children with CVI. During eye tracking, an infrared
camera tracks the pupillary and corneal light reflections while a child watches visual stimuli on a computer
monitor. The eye tracker calculates the direction of eye gaze with high spatial and temporal frequency. Our eye
tracking protocol assesses multiple afferent, efferent, and higher-order visual parameters during a 12-minute
recording session. Our initial data show that eye tracking is reliable and quantifies multiple visual and oculomotor
parameters in children with CVI. Given the large amount of data generated by eye tracking (2,000 data points
per second), higher-level analytics are required. We will validate a machine-learning model of eye tracking in
children with CVI via three Specific Aims. In Aim 1, we will quantify deficits of visual function in pediatric CVI
using eye tracking, strengthening the findings in our preliminary data by inclusion of a well-powered sample. In
Aim 2, we will use machine learning to develop a CVI eye tracking severity score. In Aim 3, we will validate eye
tracking by comparing and contrasting with two other methods of visual assessment in children with CVI, sweep
visual evoked potentials and the CVI Range. Together, these studies will establish eye tracking as a quantitative,
objective, and comprehensive measure of visual function in pediatric CVI. In the R01 application planned at the
end of the K23 award period, we will incorporate the CVI eye tracking severity score as an outcome measure in
a longitudinal study of standard and targeted therapies for CVI. In pursuit of these aims, I will be mentored by a
highly experienced, interdisciplinary, internationally recognized team at Children’s Hospital Los Angeles and
University of Southern California. Under their guidance, I will also pursue a Masters degree in Applied Data
Science and gain experiential learning in electrophysiology. The training acquired during my Career
Development Award will enable me to transition to an independent investigator leading a research program
focused on developing next-generation technologies to interrogate the visual system in children with a variety of
neurodevelopmental disorders.
项目摘要
皮质视觉障碍(CVI)是发达国家小儿视觉障碍的主要原因。
没有循证治疗,并且缺乏经过验证的方法,临床设计受到阻碍
视觉评估捕获了小儿损害的众多视觉功能的评估
CVI。
相机跟踪瞳孔和角膜光反射,而孩子在计算机上观看视觉刺激
监视器
跟踪协议评估12分钟期间的多次强制性,EFFERT和高阶视觉参数
录制会话。我们的初始数据表明,眼睛跟踪是可靠的,并量化了多个视觉和动眼
CVI儿童的参数。
每秒),需要更高级别的分析。
CVI通过AIM 1中的三个特定目标。
使用眼睛跟踪,通过包含有力的样本来奇怪我们的初步数据中的发现
AIM 2,我们将使用机器学习来开发CVI眼睛跟踪的严重性评分。
通过与CVI儿童中的另外两种视觉评估方法组成和对比来跟踪
视觉诱发电位和CVI范围。
在您计划的R01应用程序中,在您的小儿CVI中的视觉功能的全面度量。
K23奖励期结束时,我们将在CVI眼睛跟踪严重程度评分中作为结果度量
CVI的标准和tarapies的纵向研究。
洛杉矶儿童医院和
南加州大学。
科学和获得电生理学的体验学习。
开发奖将使我能够过渡到领导研究计划的独立调查员
专注于将下一代技术开发到具有多种儿童的视觉系统
神经发育障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melinda Chang其他文献
Melinda Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melinda Chang', 18)}}的其他基金
Validating a machine learning model of eye tracking in children with cortical visual impairment (CVI)
验证皮质视觉障碍 (CVI) 儿童眼球追踪的机器学习模型
- 批准号:
10425929 - 财政年份:2022
- 资助金额:
$ 23.46万 - 项目类别:
相似国自然基金
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
- 批准号:62363022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于主动统计迁移学习的电动汽车传动系统关键部件智能故障诊断研究
- 批准号:52305109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑肌协同干预和度量迁移学习的主动康复研究
- 批准号:62371172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于主动迁移学习的SAR图像场景目标联合识别方法研究
- 批准号:62301250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向医学图像处理任务的主动学习新技术研究
- 批准号:82372097
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
Diversity in a Dish: Pluripotent Stem Cells in Genetic Analysis and Disease Modeling
培养皿中的多样性:遗传分析和疾病建模中的多能干细胞
- 批准号:
10608751 - 财政年份:2023
- 资助金额:
$ 23.46万 - 项目类别:
To reduce the burden of caregiving on health outcomes of midlife women: Asian American family caregivers of persons living with Alzheimer's disease
减轻中年妇女健康结果的护理负担:阿尔茨海默病患者的亚裔美国家庭护理人员
- 批准号:
10524474 - 财政年份:2022
- 资助金额:
$ 23.46万 - 项目类别:
AIDen: An AI-empowered detection and diagnosis system for jaw lesions using CBCT
AIDen:使用 CBCT 的人工智能驱动下颌病变检测和诊断系统
- 批准号:
10383494 - 财政年份:2022
- 资助金额:
$ 23.46万 - 项目类别: