Probing macrophage cell nucleotide sensing and calcium signaling through computation
通过计算探测巨噬细胞核苷酸传感和钙信号传导
基本信息
- 批准号:10552460
- 负责人:
- 金额:$ 42.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdenosine TriphosphateAttenuatedAutomobile DrivingAwardCalcium SignalingCalmodulinCellsChronicComputer ModelsCouplingDiseaseElementsEukaryotic CellFunctional disorderGoalsGrantImmuneImmune responseImmune systemInflammationInflammatoryInflammatory ResponseInvestigationLeukocytesMacrophageMalignant NeoplasmsMediatingModelingMyocardial dysfunctionNucleotidesOutcomeP2X-receptorPathway interactionsPhagocytosisPhysiologicalPhysiologyPositioning AttributePost-Translational Protein ProcessingProcessProteinsReactive Oxygen SpeciesResearchRestRoleSepsisSignal InductionSignal PathwaySignal TransductionSystemTissuesUp-Regulationcell behaviorcomputerized toolscytokineecto-nucleotidasehealinghuman diseaseimmune functioninsightmigrationmulti-scale modelingoxidationpathogenreceptorsensorsimulationstemtool
项目摘要
While inflammation is a natural immune system response that begins the healing process, chronic inflam-
mation is tied to many human diseases including cancer, cardiac dysfunction, and sepsis. A key element of
inflammatory responses are macrophages, a white blood cell that eliminates pathogens or dying tissues. An
endogenous 'danger signal', adenosine triphosphate (ATP), stimulates Ca-dependent inflammatory pathways in
macrophages. While previous research has made great strides in understanding inflammation, my lab seeks to
uncover roles of ATP in driving macrophage inflammatory responses through multi-scale computational models
we develop. With new models of inflammatory responses in macrophages, our lab can predict protein and cell
behavior in integrated, physiological systems to better understand the immune system.
The current paradigm for ATP-triggered inflammation in macrophages is that upregulation of nucleotide-
sensing P2X channels sensitizes inflammatory responses, including cytokine and reactive oxygen species (ROS)
release. However, this paradigm does not account for several observations. One, while P2X expression is
increased in inflammatory macrophages, these receptors also support phagocytosis and migration in resting
macrophages. How these processes are selectively controlled by P2X subtypes like P2X4 and P2X7 is unresolved.
Two, inflammatory macrophages harbor post-translational modifications (PTMs) of many proteins that sense Ca,
yet little is known about how PTMs impact immune pathways they control. Three, release and degradation of ATP
by pannexins and ectonucleotidases control ATP that activates P2X, yet few studies have evaluated their coupling.
Our lab is uniquely positioned to extend this paradigm by probing mechanisms underlying these observations
and the largely unstudied coupling of P2X-, ATP-, and Ca-driven inflammation. Our lab and assembled collab-
orators will investigate the overall hypothesis via computational modeling and experimental approaches: P2X
channels in macrophages help nucleate chronic inflammation via ATP-induced ATP release (autocrinic)
mechanisms that selectively prime Ca-dependent, pro-inflammatory signaling pathways. This hypothesis
stems from questions that emerged from our investigations during the initial ESI MIRA award: 1. Does increased
P2X4 and P2X7 expression and the resulting Ca signals they induce in macrophages prolong pro-inflammatory
release of cytokines and ROS? 2. Do PTMs like ROS oxidation in the Ca-sensor calmodulin (CaM) attenuate its
activation of pro-inflammatory signaling pathways? 3. Do (autocrinic) ATP-induced, ATP release in macrophages
prolong pro-inflammatory increases in intracellular Ca?
Our long-term goal to understand macrophage physiology through computation will be accelerated
by the proposed investigations. Key expected outcomes from this grant period include new mechanisms and
simulation tools for autocrinic, ATP-driven inflammatory responses mediated by P2X receptors. Since all
Eukaryotic cells use Ca, insights from modeling macrophages will have broad impacts beyond immune function.
尽管炎症是开始愈合过程的天然免疫系统反应,但
与许多人类疾病有关,包括癌症,心脏功能障碍和败血症。一个关键要素
炎症反应是巨噬细胞,一种白细胞,可消除病原体或垂死的组织。一个
内源性“危险信号”,三磷酸腺苷(ATP),刺激CA依赖性的炎症途径
巨噬细胞。虽然先前的研究在理解障碍方面取得了长足的进步,但我的实验室试图
通过多尺度计算模型,发现ATP在驱动巨噬细胞中的作用
我们发展。借助巨噬细胞中炎症反应的新模型,我们的实验室可以预测蛋白质和细胞
综合物理系统中的行为,以更好地了解免疫系统。
巨噬细胞中ATP触发障碍的当前范式是核苷酸的上调
传感P2X通道感应感应炎症反应,包括细胞因子和活性氧(ROS)
发布。但是,该范式并未考虑几个观察结果。一个,而p2x的表达是
这些受体在炎性巨噬细胞中增加,还支持吞噬作用和迁移
巨噬细胞。这些过程如何由P2X亚型(如P2X4和P2X7)选择性控制。
二,流动性巨噬细胞具有许多感知Ca的蛋白质的翻译后修饰(PTMS)
然而,关于PTM如何影响其控制的免疫途径,知之甚少。第三,ATP的释放和降解
通过Pannexins和Ectonucleotidass控制激活P2X的ATP,但很少有研究评估其耦合。
我们的实验室是通过探测这些观察的基础机制来扩展此范式的独特位置
以及P2X-,ATP-和CA驱动的infmmmation的很大程度上未研究的耦合。我们的实验室和集会合作
演说者将通过计算建模和实验方法研究总体假设:P2X
巨噬细胞中的通道通过ATP诱导的ATP释放(ustocrinic)有助于核慢性炎症
选择性依赖CA的机制的机制。这个假设
源于我们在ESI MIRA奖中的调查中提出的问题:1。确实有所增加
P2X4和P2X7表达以及它们在巨噬细胞中影响的CA信号延长了pro炎
释放细胞因子和ROS? 2。在ca传感器钙调蛋白(CAM)中使用PTM,例如ROS氧化(CAM)
激活pro弹药信号通路? 3。do(自然)ATP诱导的ATP释放在巨噬细胞中
延长细胞内CA中的亲临界值增加?
我们通过计算来了解巨噬细胞生理的长期目标将得到加速
由拟议的调查。这笔赠款期的关键预期结果包括新机制和
由P2X接收器介导的自动分泌,ATP驱动的弹药响应的仿真工具。自从全部
真核细胞使用CA,建模巨噬细胞的见解将在免疫功能之外产生广泛的影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Michael Kekenes-Huskey其他文献
Peter Michael Kekenes-Huskey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Michael Kekenes-Huskey', 18)}}的其他基金
PROBING CELLULAR INTRACELLULAR CALCIUM SIGNALING AND SENSING THROUGH COMPUTATION
通过计算探测细胞内钙信号传导和传感
- 批准号:
9982032 - 财政年份:2017
- 资助金额:
$ 42.01万 - 项目类别:
PROBING CELLULAR INTRACELLULAR CALCIUM SIGNALING AND SENSING THROUGH COMPUTATION
通过计算探测细胞内钙信号传导和传感
- 批准号:
10222716 - 财政年份:2017
- 资助金额:
$ 42.01万 - 项目类别:
Computationally designed phospholamban-SERCA for rectifying diabetic cardiomyopa
计算设计的受磷蛋白-SERCA用于治疗糖尿病心肌病
- 批准号:
8526815 - 财政年份:2013
- 资助金额:
$ 42.01万 - 项目类别:
相似国自然基金
基于荧光共振能量转移及指示剂置换法策略纳米组装体比率荧光识别三磷酸腺苷
- 批准号:22361028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
三磷酸腺苷驱动的高分子非平衡自组装体系及其可编程生物功能研究
- 批准号:22375074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
去甲肾上腺素与三磷酸腺苷双位点荧光探针的构建及神经信号转导分子机制可视化解析
- 批准号:22307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三磷酸腺苷(ATP)诱导的短肽组装及物性研究
- 批准号:22202118
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
三磷酸腺苷(ATP)诱导的短肽组装及物性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Divergent Functions of ERK Substrate Binding Domains in Pathogenesis of Myeloproliferative Neoplasms
ERK 底物结合域在骨髓增生性肿瘤发病机制中的不同功能
- 批准号:
10719088 - 财政年份:2023
- 资助金额:
$ 42.01万 - 项目类别:
Characterizing Alzheimer's Risk in Retired Night Shift Workers: Cognitive Function, Brain Volume, and Brain Bioenergetics
退休夜班工人患阿尔茨海默病的风险特征:认知功能、脑容量和脑生物能学
- 批准号:
10350125 - 财政年份:2022
- 资助金额:
$ 42.01万 - 项目类别:
Mechanisms of Somatostatin-Mediated Inhibition of Insulin and Glucagon
生长抑素介导的胰岛素和胰高血糖素抑制机制
- 批准号:
10537377 - 财政年份:2022
- 资助金额:
$ 42.01万 - 项目类别:
Therapeutic implications of purinergic receptor P2X4 in ischemic stroke
嘌呤能受体 P2X4 在缺血性中风中的治疗意义
- 批准号:
10634727 - 财政年份:2022
- 资助金额:
$ 42.01万 - 项目类别:
Mitokines as new targets for fatigue induced by mitochondrial stress
线粒体因子作为线粒体应激引起的疲劳的新靶点
- 批准号:
10598758 - 财政年份:2022
- 资助金额:
$ 42.01万 - 项目类别: