Reducing slip-and-fall accidents in the workplace: Role of small-scale roughness of floor surfaces to improve friction

减少工作场所滑倒事故:地板表面小规模粗糙度对改善摩擦力的作用

基本信息

项目摘要

Project Summary Fall-related injuries burden over 140,000 workers annually, causing significant human suffering and an economic cost of $10 billion in Workers' Compensation. Approximately half of occupational falls are caused by slipping. An under-explored pathway to preventing these slip-and-fall events is to design flooring for workplaces with high friction performance. High-friction flooring prevents the slip events that lead to a fall. Unfortunately, current methods to characterize floor-surface topography are unable to predict friction performance, limiting innovation in this area. In order to catalyze innovation in high-friction flooring, there is a need for improved scientific understanding of the flooring factors that contribute to friction. Our preliminary studies and existing literature suggest that small-scale topography (features at the 1-nm to 1-µm scale) is critical for predicting floor performance, but is not measurable using conventional characterization techniques. The purpose of this R21 project is to measure these small-scales of floor-surface topography, and to use them to develop a mechanics-based predictive model for friction. This research is innovative because it will employ novel experimental methods and analysis techniques that have never been applied to flooring surfaces, and because it will develop a mechanics-based model to predict the relationship between floor structure and friction performance, where prior research has relied solely on empirical correlations. The proposed research will be accomplished through two Aims: Aim 1: Quantify the dependence of shoe-floor friction performance on small-scale topography. This Aim will investigate the ability of small-scale topography to explain variations in shoe-floor friction performance that cannot be explained using current measurement techniques. Then we will test the first hypothesis: Hypothesis 1: Roughness parameters that consider the full range of scales will improve our ability to predict COF values compared with those using just stylus profilometry. Aim 2: Establish a predictive mechanics-based model for shoe-floor friction based on multiscale surface topography. In this Aim, we will develop and validate a multiscale finite element model that captures viscoelastic contributions to friction across all length scales. We will test the second hypothesis: Hypothesis 2: A mechanics-based model using multiscale topography will more accurately predict shoe-floor friction compared with conventional approaches, i.e., statistical models based on stylus profilometry. This research is expected to lead to foundational knowledge and a modeling tool for optimizing high-friction flooring in workplaces. Working with an industry trade group, the Tile Council of North America (TCNA), this research will achieve impact by guiding the evidence-based development of high-friction flooring for workplaces. Thus, the proposed research is expected to achieve impact in improving workplace safety.
项目概要 与跌倒相关的伤害每年给超过 140,000 名工人带来负担,造成严重的人类痛苦和 100 亿美元的工人赔偿经济损失大约有一半是由职业损失造成的。 防止这些滑倒事件的一个尚未探索的途径是设计用于防止滑倒的地板。 具有高摩擦性能的工作场所高摩擦地板可防止导致跌倒的滑倒事件。 不幸的是,当前表征地板表面地形的方法无法预测摩擦力 性能,限制了该领域的创新 为了促进高摩擦地板的创新,有一个方法。 需要提高对导致摩擦的地板因素的科学认识。 研究和现有文献表明,小尺度地形(1 nm 至 1 µm 尺度的特征)是 对于预测地板性能至关重要,但无法使用传统表征技术进行测量。 这个 R21 项目的目的是测量这些小尺度的地板表面地形,并利用它们 开发基于力学的摩擦预测模型这项研究具有创新性,因为它将采用。 从未应用于地板表面的新颖实验方法和分析技术,以及 因为它将开发一个基于力学的模型来预测地板结构和摩擦之间的关系 性能,先前的研究仅依赖于经验相关性。 通过两个目标来实现: 目标 1:量化鞋底摩擦性能对小规模地形的依赖性。 将研究小规模地形的能力来解释鞋底摩擦性能的变化 无法用当前的测量技术来解释然后我们将检验第一个假设:假设。 1:考虑全范围尺度的粗糙度参数将提高我们预测COF值的能力 与仅使用触针轮廓测量法的方法相比。 目标 2:建立基于多尺度的鞋底摩擦预测力学模型 在这个目标中,我们将开发并验证一个捕获表面形貌的多尺度有限元模型。 我们将检验第二个假设:假设 2: 使用多尺度地形的基于力学的模型将更准确地预测鞋底摩擦力 与传统方法(即基于触针轮廓测量的统计模型)相比。 这项研究预计将带来基础知识和优化高摩擦的建模工具 与行业贸易组织北美瓷砖委员会 (TCNA) 合作,这 研究将通过基于证据的高摩擦地板开发产生影响 因此,拟议的研究预计将在改善工作场所安全方面产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kurt E Beschorner其他文献

Kurt E Beschorner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kurt E Beschorner', 18)}}的其他基金

Preventing Slips in Food Service: Development of Tools for Shoe Selection and Replacement
预防餐饮服务中的滑倒:开发鞋子选择和更换工具
  • 批准号:
    10365224
  • 财政年份:
    2023
  • 资助金额:
    $ 20.4万
  • 项目类别:
Predicting slips during ladder climbing: novel methods for assessing shoe-rung friction
预测爬梯过程中的打滑:评估鞋横档摩擦力的新方法
  • 批准号:
    10227650
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
Predicting slips during ladder climbing: novel methods for assessing shoe-rung friction
预测爬梯过程中的打滑:评估鞋横档摩擦力的新方法
  • 批准号:
    10411875
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
Predicting slips during ladder climbing: novel methods for assessing shoe-rung friction
预测爬梯过程中的打滑:评估鞋横档摩擦力的新方法
  • 批准号:
    10783822
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
Portable Slip-Testing Device for Measuring Shoe-Floor Coefficient of Friction
测量鞋底摩擦系数的便携式防滑测试装置
  • 批准号:
    9347380
  • 财政年份:
    2017
  • 资助金额:
    $ 20.4万
  • 项目类别:
Impact of Worn Shoes on Slipping
旧鞋对滑倒的影响
  • 批准号:
    9146903
  • 财政年份:
    2015
  • 资助金额:
    $ 20.4万
  • 项目类别:
Quantifying the Recovery Response and Role of Hand Strength During Ladder Falls
量化梯子跌倒期间手部力量的恢复反应和作用
  • 批准号:
    8302564
  • 财政年份:
    2012
  • 资助金额:
    $ 20.4万
  • 项目类别:

相似国自然基金

膝关节软骨退变多模态磁共振成像与软骨及滑膜相关生物标记物表达关系的实验研究
  • 批准号:
    82360339
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
脉冲抛物型和双曲型分布参数系统的滑模控制研究
  • 批准号:
    62373119
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
微/纳双模多孔结构仿生超滑防污涂层的设计制备及其长效防污机理
  • 批准号:
    52371078
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
DoS攻击下网络化工业机器人系统自适应弹性滑模控制的研究
  • 批准号:
    62303250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于双目视觉与结构光的沥青路面抗滑贡献区纹理重构及特征评价
  • 批准号:
    52308446
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Workplace fall prevention through slip recovery training
通过滑倒恢复训练预防工作场所跌倒
  • 批准号:
    10709623
  • 财政年份:
    2022
  • 资助金额:
    $ 20.4万
  • 项目类别:
Workplace fall prevention through slip recovery training
通过滑倒恢复训练预防工作场所跌倒
  • 批准号:
    10508537
  • 财政年份:
    2022
  • 资助金额:
    $ 20.4万
  • 项目类别:
Development of Shoe Soles and Flooring Materials for Fall Prevention Based on Elucidation of Friction-Induced Slip and Trip Fall Mechanisms
基于摩擦引起的滑动和绊倒跌倒机制的阐明,开发用于预防跌倒的鞋底和地板材料
  • 批准号:
    20H04558
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of Fall Avoidance Strategies with Experiments during the Applied Stimulation of the Slipping Fall
滑倒跌倒施加刺激时避免跌倒策略的实验分析
  • 批准号:
    17K01566
  • 财政年份:
    2017
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Variability and Specificity in Reactive Stabilization Movements to Diverse Slip Perturbations
各种滑移扰动的反应稳定运动的可变性和特异性
  • 批准号:
    10708798
  • 财政年份:
    2014
  • 资助金额:
    $ 20.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了