Modulating brain networks to reduce gait variability in older adults at risk of falling
调节大脑网络以减少有跌倒风险的老年人的步态变异
基本信息
- 批准号:10549840
- 负责人:
- 金额:$ 12.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAgingAttentionBrainBrain imagingClinical ResearchClinical TrialsCognitionComplexDataDiseaseDorsalElderlyElectrodesEligibility DeterminationExhibitsExposure toFrequenciesFunctional Magnetic Resonance ImagingGaitGeriatricsGoalsImpaired cognitionIndividualInjuryInterventionLeadLinkMagnetic Resonance ImagingMeasuresMindMotionMovementOutcomeParticipantPatternPerformanceRandomizedRehabilitation therapyResearchRestScalp structureScientistSensory ProcessTechniquesTestingTimeTrainingUnsteady GaitVisitWalkingWorkcareercareer developmentcognitive neurosciencecognitive taskcohortdesigneffective interventionevidence basefall riskfallsfollow-upgait rehabilitationimprovedinnovationinterestmultimodalityneuralneuroimagingneuromechanismneuroregulationnoninvasive brain stimulationnovelpatient orientedpost interventionprimary outcomerecruitsecondary analysissecondary outcomesmartphone applicationsustained attentiontranscranial direct current stimulationtreatment arm
项目摘要
PROJECT SUMMARY
My career goal is to lead efforts to improve gait rehabilitation and mitigate falls risk in older adults by
conducting innovative research focused on the neural control and enhancement of gait and mobility. I am
particularly interested in developing individualized, multi-modal, and patient-centered interventions that can
both stand alone and be combined with current evidenced-based geriatrics rehabilitation programming.
Though walking is a repetitive task, one’s temporospatial patterns of movement during walking vary from stride
to stride. This gait variability, if sufficiently high, is predictive of both falls and cognitive decline in older adults.
Still, the neural mechanisms that give rise to gait variability are not completely understood. We thus lack
effective interventions to minimize gait variability in older adults. However, our team has demonstrated that in
older adults, those with elevated gait variability exhibit worse ability to sustain performance on a continuous
cognitive task over time (i.e., sustained attention). My work has also linked gait variability to the functional
connectivity between the two large-scale brain networks believed to underserve sustained attention—namely,
the dorsal attention network (DAN) and the default network (DN)—in multiple cohorts of older adults. Based
upon these discoveries, we designed a novel multi-channel transcranial direct current stimulation (tDCS)
intervention to simultaneously facilitate the excitability of the DAN and inhibit the excitability of the DN. Our
preliminary data suggests that a single exposure to this tDCS, as compared to sham, reduces gait variability
when tested just following stimulation. My overarching hypothesis is that this form of tDCS can modulate the
functional connectivity between the DAN and DN and thus reduce gait variability in older adults. In this project,
we will test this hypothesis by examining the acute after-effects of a single session of tDCS on resting-state
functional connectivity (Aim 1), as well as determining the effects of a multi-session tDCS intervention on gait
variability and related outcomes (Aim 2). We will recruit 30 older adults free of major disease that exhibit
higher-than-typical gait variability. Participants will first complete a baseline assessment and two fMRI visits.
The same participants will then be randomized to a tDCS intervention arm (ten, once-daily, 20-min sessions) or
a ShamàtDCS intervention arm (five, once-daily, 20-min sessions of sham in week one followed by five, once-
daily, 20-min sessions of tDCS in week 2). The primary outcome of gait variability will be assessed daily using
a validated smartphone app for the entire study period. We expect to demonstrate that tDCS can modulate
functional connectivity and reduce gait variability in older adults. The results from this project are expected to
inform the design of a larger, more definitive trial of tDCS designed to optimize brain connectivity as it relates
to gait variability in older adults. This research, combined with specific training in advanced neuroimaging and
neuromodulation, cognitive neuroscience in aging, and the conduct a clinical research in vulnerable older
adults, will greatly facilitate my efforts to transition into an independence clinician scientist.
项目概要
我的职业目标是通过以下方式领导改善步态康复和跌倒风险的工作
我正在开展专注于神经控制以及步态和活动能力增强的创新研究。
对开发个性化、多模式和以患者为中心的干预措施特别感兴趣
两者都是独立的,并且可以与当前基于证据的老年病康复规划相结合。
尽管步行是一项重复性任务,但步行时人的时空运动模式与步幅不同
如果这种步态变化足够大,则预示着老年人会跌倒和认知能力下降。
尽管如此,引起步态变异的神经机制尚未完全被了解。
然而,我们的团队已经证明,可以采取有效的干预措施来最大限度地减少老年人的步态变异。
对于老年人,步态变异性较高的人表现出较差的连续表现能力
我的工作还将步态变异性与功能联系起来。
两个大规模大脑网络之间的连接被认为不足以维持持续的注意力,即
背侧注意力网络(DAN)和默认网络(DN)——在多个老年人群体中。
根据这些发现,我们设计了一种新型多通道经颅直流电刺激(tDCS)
干预同时促进 DAN 的兴奋性并抑制 DN 的兴奋性。
初步数据表明,与假手术相比,单次暴露于这种 tDCS 可以减少步态变异性
当刺激后进行测试时,我的总体假设是这种形式的 tDCS 可以调节
DAN 和 DN 之间的功能连接,从而减少老年人的步态变异。
我们将通过检查单次 tDCS 对静息状态的急性后遗症来检验这一假设
功能连接(目标 1),以及确定多会话 tDCS 干预对步态的影响
我们将招募 30 名没有表现出重大疾病的老年人。
高于典型的步态变异性。参与者将首先完成基线评估和两次功能磁共振成像检查。
然后,相同的参与者将被随机分配到 tDCS 干预组(十次、每天一次、每次 20 分钟)或
ShamàtDCS 干预组(第一周进行 5 次、每天一次、每次 20 分钟的假手术,随后进行 5 次、每次 1 次)
第 2 周每天进行 20 分钟的 tDCS 训练,每天将使用以下方法评估步态变异性的主要结果。
我们希望证明 tDCS 可以在整个研究期间进行调节。
该项目的结果预计将增强老年人的功能连接并减少步态变异。
为设计更大规模、更明确的 tDCS 试验提供信息,该试验旨在优化相关的大脑连接
这项研究结合了高级神经影像学和特殊训练。
神经调节、衰老认知神经科学以及对弱势老年人进行临床研究
成人,将极大地促进我向独立临床科学家的转变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
On-Yee Amy Lo其他文献
On-Yee Amy Lo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('On-Yee Amy Lo', 18)}}的其他基金
Modulating brain networks to reduce gait variability in older adults at risk of falling
调节大脑网络以减少有跌倒风险的老年人的步态变异
- 批准号:
10350909 - 财政年份:2022
- 资助金额:
$ 12.49万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
- 批准号:82302829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Driving Rehabilitation and Innovation for Evaluating Risk in Post-Intensive Care Unit Survivors (DRIVE-PICS)
推动康复和创新以评估重症监护室幸存者的风险 (DRIVE-PICS)
- 批准号:
10574692 - 财政年份:2023
- 资助金额:
$ 12.49万 - 项目类别:
Drug repurposing for Alzheimer’s disease-related inflammation caused by a TBI
药物再利用,治疗 TBI 引起的阿尔茨海默病相关炎症
- 批准号:
10590132 - 财政年份:2023
- 资助金额:
$ 12.49万 - 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 12.49万 - 项目类别:
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
- 批准号:
10678125 - 财政年份:2023
- 资助金额:
$ 12.49万 - 项目类别:
Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
- 批准号:
10662883 - 财政年份:2023
- 资助金额:
$ 12.49万 - 项目类别: