Targeting aging genes and pathways to promote optic nerve regeneration
针对衰老基因和途径促进视神经再生
基本信息
- 批准号:10547815
- 负责人:
- 金额:$ 40.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAgingAxonBioinformaticsBiomedical ResearchBlood VesselsBrainCaenorhabditis elegansCatalytic DomainCell AgingCellsCentral Nervous SystemChromatinChromosome FragilityConsensusCorticospinal TractsCytoskeletonDNA RepairDataDevelopmentEnzymesEpigenetic ProcessEvolutionFOXO3A geneFRAP1 geneFailureGenesGenetic TechniquesGenetic TranscriptionGenomic InstabilityHeterochromatinHistonesIGF-1 Signaling PathwayInsulinInsulin-Like Growth Factor IKnock-outLongevityLysineMediatingMethylationMolecularMolecular TargetMyosin Type IINatural regenerationNerve RegenerationNeurodegenerative DisordersNeuronsNoiseNonmuscle Myosin Type IIANutrientOptic NerveOptic Nerve InjuriesPIK3CG genePathway interactionsProcessProductionProtocols documentationPublishingRNA-Directed DNA PolymeraseRegenerative capacityRegulationRegulator GenesRegulatory PathwayRejuvenationRetinal Ganglion CellsRoleSIRT1 geneSOX11 geneSTK11 geneSensorySignal TransductionSpinal cord injuryTP53 geneTelomeraseTraumatic Brain Injuryage effectaging geneaxon growthaxon injuryaxon regenerationc-myc Genescell regenerationdesigner receptors exclusively activated by designer drugsdetection of nutrientexperimental studygene repressiongenetic manipulationhistone methylationhuman diseasein vivo regenerationinduced pluripotent stem cellinhibitorinnovationinsightneuralnoveloptic nerve regenerationoverexpressionscreeningsensorspinal cord regenerationtelomeretranscription factortranscriptome sequencingtranscriptomics
项目摘要
Summary
To date, targeting the genes regulating intrinsic axon growth ability have produced by far the most promising
results in optic nerve regeneration. Recent studies, including ours, have provided strong evidence that neuronal
aging might be a key converging process underlying the loss of intrinsic axon growth ability of CNS neurons.
Indeed, many genes that act to regulate axon regeneration are also hallmark genes of aging (genomic instability,
telomere attrition, epigenetic alteration, and nutrient sensing, etc.). First, recent studies and our preliminary
results showed that c-Myc and p53, two well-known genes involved in DNA repair and genomic instability during
aging, act to support optic nerve regeneration. Second, our preliminary study showed that telomerase reverse
transcriptase (TERT) was necessary for sensory axon regeneration in vivo. Third, aging is often associated with
decreased methylation of histone 3 at lysine 27 (H3K27) and increased methylation of H3K4, resulting in reduced
amount of heterochromatin. In support, the level of H3K27 demethylase UTX increases during aging and
knocking out UTX in c. elegans promotes longevity. Our unpublished study showed that knocking out UTX and
its targeted gene, Magi3, in RGCs drastically promoted optic nerve regeneration. Fourth, the insulin and IGF-1
signaling (IIS) pathways, the key regulators of nutrient sensing, are the most conserved aging controlling
pathway in evolution. IGF-1 and many IIS downstream targets, such as Pten/PI3K, Akt, and mTor, are all
important regulators of optic nerve regeneration. Our published study and a recent study have shown that Sirt1
and LKB1, two important nutrient sensors, function to regulate sensory axon and spinal cord regeneration,
respectively. Foxo3, another key target of Akt signaling, has recently been shown to promote vascular cell
regeneration through Sirt1. Lastly, recent findings indicated that cellular reprogramming process can reverse
aging and rejuvenate the cells. Importantly, manipulations of several reprogramming factors, such as KLF4 and
Lin28, have been shown to promote optic nerve regeneration. Therefore, we hypothesize that aging regulatory
genes/pathways can be manipulated to promote optic nerve regeneration through rejuvenation of mature CNS
neurons. In Aim 1, we will determine if manipulation of miR-138/Sirt1, TERT, and Foxo3 in RGCs can promote
optic nerve regeneration. In Aim 2, we will first determine if combination of these aging genes with myosin II
knockout or enhanced neural activity would have synergistic effects on regeneration. We will then use RNA-seq
and ATAC-seq of purified RGCs to explore how these aging genes regulate optic nerve regeneration. In Aim 3, by
performing RNA-seq and ATAC-seq of purified RGCs at different developing, maturation, and aging stages, we
will first use advanced integrative bioinformatics analyses to identify top candidate aging genes and their
associated transcription factors, both of which act to orchestrate RGCs aging. We will then perform functional
screening experiments to determine their roles in regulation of axon growth and optic nerve regeneration.
概括
迄今为止,针对调节内在轴突生长能力的基因已经产生了迄今为止最有希望的
导致视神经再生。最近的研究,包括我们的研究,提供了强有力的证据表明神经元
衰老可能是中枢神经系统神经元内在轴突生长能力丧失的一个关键收敛过程。
事实上,许多调节轴突再生的基因也是衰老的标志基因(基因组不稳定、
端粒磨损、表观遗传改变和营养感应等)。首先,最近的研究和我们的初步
结果表明,c-Myc 和 p53 这两个众所周知的基因参与 DNA 修复和基因组不稳定
抗衰老,支持视神经再生。其次,我们的初步研究表明端粒酶逆转
转录酶(TERT)对于体内感觉轴突再生是必需的。第三,衰老往往与
组蛋白 3 在赖氨酸 27 (H3K27) 处的甲基化减少,H3K4 的甲基化增加,从而导致
异染色质的量。作为支持,H3K27 去甲基化酶 UTX 的水平在衰老过程中增加,并且
在c中敲除UTX。秀丽隐杆线虫可以延年益寿。我们未发表的研究表明,敲除 UTX 和
其 RGC 中的目标基因 Magi3 极大地促进了视神经再生。四、胰岛素和IGF-1
信号传导(IIS)途径是营养感应的关键调节因子,是最保守的衰老控制途径
进化中的途径。 IGF-1 和许多 IIS 下游目标,例如 Pten/PI3K、Akt 和 mTor,都是
视神经再生的重要调节因子。我们发表的研究和最近的一项研究表明 Sirt1
和LKB1,两种重要的营养传感器,具有调节感觉轴突和脊髓再生的功能,
分别。 Foxo3 是 Akt 信号传导的另一个关键靶标,最近被证明可以促进血管细胞生长
通过 Sirt1 进行再生。最后,最近的研究结果表明,细胞重编程过程可以逆转
延缓衰老并恢复细胞活力。重要的是,对几个重编程因子的操纵,例如 KLF4 和
Lin28 已被证明可以促进视神经再生。因此,我们假设老龄化监管
可以操纵基因/通路,通过成熟中枢神经系统的复兴来促进视神经再生
神经元。在目标 1 中,我们将确定在 RGC 中操纵 miR-138/Sirt1、TERT 和 Foxo3 是否可以促进
视神经再生。在目标 2 中,我们将首先确定这些衰老基因是否与肌球蛋白 II 结合
敲除或增强的神经活动将对再生产生协同作用。然后我们将使用RNA-seq
对纯化的 RGC 进行 ATAC-seq,以探索这些衰老基因如何调节视神经再生。在目标 3 中,通过
对不同发育、成熟和衰老阶段的纯化 RGC 进行 RNA-seq 和 ATAC-seq,我们
将首先使用先进的综合生物信息学分析来识别最重要的候选衰老基因及其
相关的转录因子,两者都可以协调 RGC 的衰老。然后我们将执行功能
筛选实验以确定它们在调节轴突生长和视神经再生中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mei Wan其他文献
Mei Wan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mei Wan', 18)}}的其他基金
Senescence of Pre-Osteoclasts in Non-Traumatic OA
非创伤性骨关节炎中前破骨细胞的衰老
- 批准号:
10090198 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Identifying A Skeleton-Derived Factor for Vascular Aging
识别血管老化的骨骼衍生因子
- 批准号:
10544756 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Senescence of Pre-Osteoclasts in Non-Traumatic OA
非创伤性骨关节炎中前破骨细胞的衰老
- 批准号:
10326804 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Identifying A Skeleton-Derived Factor for Vascular Aging
识别血管老化的骨骼衍生因子
- 批准号:
10380873 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Senescence of Pre-Osteoclasts in Non-Traumatic OA
非创伤性骨关节炎中前破骨细胞的衰老
- 批准号:
10556420 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Identifying A Skeleton-Derived Factor for Vascular Aging
识别血管老化的骨骼衍生因子
- 批准号:
10202909 - 财政年份:2021
- 资助金额:
$ 40.94万 - 项目类别:
Role of Cellular Senescence in the Bone-Brain Interplay
细胞衰老在骨脑相互作用中的作用
- 批准号:
10417206 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
Role of Cellular Senescence in the Bone-Brain Interplay
细胞衰老在骨脑相互作用中的作用
- 批准号:
10634546 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
Targeting aging genes and pathways to promote optic nerve regeneration
针对衰老基因和途径促进视神经再生
- 批准号:
10326837 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
Role of Cellular Senescence in the Bone-Brain Interplay
细胞衰老在骨脑相互作用中的作用
- 批准号:
10041954 - 财政年份:2020
- 资助金额:
$ 40.94万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
- 批准号:82302829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Single-cell transcriptomic and epigenomic analysis of brain cell vulnerabilities to tauopathies in early AD impacted brain regions
早期 AD 影响大脑区域脑细胞对 tau 蛋白病变脆弱性的单细胞转录组和表观基因组分析
- 批准号:
10667016 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Multidimensional mapping of vulnerable cell types in humanized Alzheimer's disease mouse models
人性化阿尔茨海默病小鼠模型中脆弱细胞类型的多维图谱
- 批准号:
10667216 - 财政年份:2023
- 资助金额:
$ 40.94万 - 项目类别:
Circuit-specific cell types in aging and Alzheimer's disease
衰老和阿尔茨海默病中的电路特异性细胞类型
- 批准号:
10431698 - 财政年份:2022
- 资助金额:
$ 40.94万 - 项目类别:
Histone and DNA methyltransferases in optic nerve regeneration
视神经再生中的组蛋白和 DNA 甲基转移酶
- 批准号:
10432811 - 财政年份:2022
- 资助金额:
$ 40.94万 - 项目类别:
Role of synaptic Schwann cells in NMJ and skeletal muscle aging
突触雪旺细胞在 NMJ 和骨骼肌衰老中的作用
- 批准号:
10688321 - 财政年份:2022
- 资助金额:
$ 40.94万 - 项目类别: