Advanced Computational Approaches to Delineating Dynamic Cancer Progression Processes by Using Massive Static Sample Data
使用大量静态样本数据描绘动态癌症进展过程的高级计算方法
基本信息
- 批准号:10546466
- 负责人:
- 金额:$ 34.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-05 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdvisory CommitteesAutomobile DrivingBioinformaticsBiological ProcessBreast Cancer ModelCancer DiagnosticsCatalogsCause of DeathClinicalClinical ManagementCommunitiesComputer softwareDNA Sequence AlterationDataData SetDevelopmentDiseaseDisease ProgressionDisease-Free SurvivalEconomicsEpigenetic ProcessEthicsEventEvolutionExperimental DesignsFoundationsGenesGeneticGenetic VariationGenomic InstabilityGenomicsHumanInterdisciplinary StudyInvestigationInvestmentsLearningLifeMalignant - descriptorMalignant NeoplasmsMethodsModelingMolecularMolecular ProfilingMutationNatural SelectionsNeoplasm MetastasisPathway AnalysisPathway interactionsPatternPredispositionPrimary NeoplasmProbabilityProcessProgressive DiseaseResearchResolutionResourcesRoleSamplingSeriesStructureTechnologyTestingThe Cancer Genome AtlasTherapeutic InterventionTimeTissue SampleTumor BiologyTumor TissueUnited States National Institutes of HealthVisualizationWorkadvanced diseaseanticancer researchbioinformatics pipelinebreast cancer progressioncancer genomecohortdynamic systemgenetic associationgenetic informationgenomic dataimprovedin silicoindexinginsightmalignant breast neoplasmnovelopen sourceprognostictargeted treatmenttheoriestissue archivetumortumor progression
项目摘要
Abstract
Human cancer is a dynamic disease that develops over an extended time period through the accumulation of a
series of genetic alterations. Delineating the system dynamics of disease progression can significantly advance
our understanding of tumor biology, and lay a critical foundation for the development of improved cancer
diagnostics, prognostics and targeted therapeutics. Traditionally, system dynamics is approached through
time-course studies achieved by repeated sampling of the same cohort of subjects across an entire biological
process. However, due to ethical and economic constraints, it is not feasible to collect time-series data to study
human cancer, and typically we can only obtain profile data from excised tumor tissues. Consequently, while
major efforts continue to reveal the genomic events associated with human cancer, to date, it has been difficult
to put the identified changes in the context of the dynamic disease process. With the rapid development of
sequencing technology, many thousands of static tumor samples are being collected in large-scale cancer
studies. This provides us with a unique opportunity to develop a novel analytical strategy to use static data,
instead of time-course data, to study disease dynamics. Built logically on our previous work, we propose a
large-scale interdisciplinary research plan to develop a series of novel methods that enable the construction of
high-resolution cancer progression models by using massive static data, the identification of pivotal molecular
events that drive stepwise disease progression, and the visualization of identified changes in a cancer
development roadmap. If successfully implemented, this work can effectively overcome the existing sampling
limitations, and open a new avenue of research to study cancer dynamics by using vast tissue archive, instead
of performing resource-intensive or impractical time-course studies. The developed methods will be intensively
tested on 27 breast cancer datasets comprised of ~9,000 samples. To our knowledge, no prior work has been
performed on this scale to study breast cancer dynamics. The analysis will result in the first working model of
breast cancer progression constructed by incorporating all genetic information. The constructed model can
provide a foundation for the visualization of key progressive molecular events and facilitate the identification of
pivotal driver genes and pathways and potential points of susceptibility for therapeutic intervention. Moreover,
interrogation of the constructed model will enable us to test novel hypotheses in silico and to prioritize
resources for more focused and detailed investigations experimentally. We expect that our work will have a
broad impact. Although in this study we focus mainly on breast cancer, the developed methods can also be
used to study other cancers and other human progressive diseases, where the lack of time-series data to study
system dynamics is a ubiquitous problem.
抽象的
人类癌症是一种动态疾病,通过长期积累而发展。
一系列的基因改变。描绘疾病进展的系统动力学可以显着推进
我们对肿瘤生物学的理解,为改善癌症的发展奠定重要基础
诊断、预后和靶向治疗。传统上,系统动力学是通过
通过在整个生物过程中对同一组受试者重复采样来实现时间过程研究
过程。然而,由于伦理和经济的限制,收集时间序列数据来研究是不可行的。
人类癌症,通常我们只能从切除的肿瘤组织中获得轮廓数据。因此,虽然
重大努力不断揭示与人类癌症相关的基因组事件,迄今为止,这一直很困难
将已识别的变化置于动态疾病过程的背景下。随着我国的快速发展
测序技术,正在大规模癌症中采集数千个静态肿瘤样本
研究。这为我们提供了一个独特的机会来开发一种使用静态数据的新颖的分析策略,
而不是时间过程数据来研究疾病动态。在我们之前的工作的基础上,我们提出了一个逻辑
大规模跨学科研究计划,开发一系列新方法,使构建
通过使用大量静态数据建立高分辨率癌症进展模型,识别关键分子
推动疾病逐步进展的事件,以及癌症中已识别变化的可视化
发展路线图。如果成功实施,这项工作可以有效克服现有的采样问题
局限性,并开辟一条新的研究途径,通过使用大量的组织档案来研究癌症动力学,而不是
进行资源密集型或不切实际的时间过程研究。所开发的方法将集中
在包含约 9,000 个样本的 27 个乳腺癌数据集上进行了测试。据我们所知,之前没有任何工作
以这种规模进行研究乳腺癌动力学。分析将产生第一个工作模型
通过整合所有遗传信息构建乳腺癌进展。构建的模型可以
为关键进展分子事件的可视化提供基础,并促进识别
关键驱动基因和途径以及治疗干预的潜在易感点。而且,
对构建的模型的询问将使我们能够在计算机中测试新的假设并确定优先级
进行更集中和更详细的实验研究的资源。我们希望我们的工作能够有一个
影响广泛。虽然在这项研究中我们主要关注乳腺癌,但所开发的方法也可以用于
用于研究其他癌症和其他人类进行性疾病,但缺乏时间序列数据来研究
系统动力学是一个普遍存在的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Goodison其他文献
Steve Goodison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Goodison', 18)}}的其他基金
Prognostic analysis and progression modeling of basal-like breast cancer using multi-region sequencing
使用多区域测序对基底样乳腺癌进行预后分析和进展建模
- 批准号:
10586445 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别:
Advanced Computational Approaches to Delineating Dynamic Cancer Progression Processes by Using Massive Static Sample Data
使用大量静态样本数据描绘动态癌症进展过程的高级计算方法
- 批准号:
10328873 - 财政年份:2020
- 资助金额:
$ 34.95万 - 项目类别:
Translation of a Clinical Molecular Diagnostic Assay for Bladder Cancer
膀胱癌临床分子诊断检测的转化
- 批准号:
10203860 - 财政年份:2017
- 资助金额:
$ 34.95万 - 项目类别:
Translation of a Clinical Molecular Diagnostic Assay for Bladder Cancer
膀胱癌临床分子诊断检测的转化
- 批准号:
9980305 - 财政年份:2017
- 资助金额:
$ 34.95万 - 项目类别:
Development of molecular assays for non-invasive bladder cancer detection
开发用于非侵入性膀胱癌检测的分子测定方法
- 批准号:
8453158 - 财政年份:2013
- 资助金额:
$ 34.95万 - 项目类别:
Development of molecular assays for non-invasive bladder cancer detection
开发用于非侵入性膀胱癌检测的分子测定方法
- 批准号:
8823877 - 财政年份:2013
- 资助金额:
$ 34.95万 - 项目类别:
Towards a non-invasive molecular test for bladder cancer
膀胱癌的非侵入性分子检测
- 批准号:
8875841 - 财政年份:2007
- 资助金额:
$ 34.95万 - 项目类别:
Towards a non-invasive molecular test for bladder cancer
膀胱癌的非侵入性分子检测
- 批准号:
7305500 - 财政年份:2007
- 资助金额:
$ 34.95万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The WUSTL PREP post-bacc program to enhance doctoral readiness in neuroscience
WUSTL PREP post bacc 项目旨在提高神经科学博士的准备程度
- 批准号:
10611674 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别:
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别:
Estimating Mediation and Moderation Effects in HIV Care Continuum Intervention Trials for People who Use Drugs
估计吸毒者艾滋病毒护理连续干预试验中的中介和调节效应
- 批准号:
10676648 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别:
The Center for Innovation and Translation of Point of Care Technologies for Equitable Cancer Care (CITEC) - Administrative Core
公平癌症护理护理点技术创新与转化中心 (CITEC) - 行政核心
- 批准号:
10715741 - 财政年份:2023
- 资助金额:
$ 34.95万 - 项目类别: