Causal machine learning methods for studying the effects of environmental exposures on childhood cancer using natural experiments
使用自然实验研究环境暴露对儿童癌症影响的因果机器学习方法
基本信息
- 批准号:10549353
- 负责人:
- 金额:$ 13.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:1,3-ButadieneAccountingAddressAdultAffectAirAreaAwardBayesian learningBenzeneBiologicalBiologyCancer BiologyCase/Control StudiesCellular biologyChemicalsChildChild HealthChildhood LeukemiaCodeCohort StudiesCommunitiesComputer softwareDNA Sequence AlterationDataData ScienceDeveloped CountriesDevelopmentDisciplineEducational workshopEnsureEnvironmentEnvironmental ExposureEnvironmental HealthEpidemiologyEventExposure toFoundationsFundingGasolineGoalsHealthHeterogeneityHomeIncidenceInvestigationKnowledgeLearningLiteratureMachine LearningMalignant Childhood NeoplasmMeasuresMedicalMentorsMentorshipMethodologyMethodsModelingNatural experimentOccupational ExposureOutcomePediatric OncologyPlayPositioning AttributePredispositionProcessProliferatingRegulationReproducibilityResearchResearch DesignResourcesRisk FactorsRoleScienceSeriesSocial SciencesSocietiesSourceTimeTime trendTrainingUnited States Environmental Protection AgencyWorkcancer epidemiologycareer developmentcase controlcohorteducational atmosphereenvironmental agentepidemiology studyexhaustexperienceexperimental analysishealth applicationhealth datainnovationinsightknowledge integrationleukemiamachine learning methodmachine learning modelmortalityneoplasm registryopen sourcepostnatalprenatalprenatal exposureprogramssimulationskillsstatisticssymposiumtoolusabilityuser-friendly
项目摘要
Project Summary:
My goal is to build an independent research program in the development of causal inference methods for
investigating environmental causes of childhood cancer. This K01 will enable me to conduct the focused,
intensive research that will lay the groundwork for that program and to acquire the environmental, biological,
and epidemiological training needed to maximize the rigor and impact of my work.
Research: We propose to develop new causal machine learning (ML) methods that enable rigorous analysis
of environmental natural experiments (NE) for estimation of the causal effects of environmental exposures on
childhood cancer. Classical approaches to studying relationships between environmental exposures and
childhood cancer are plagued with challenges and are yielding inconsistent findings. We contend that the
recent proliferation of local environmental regulatory programs has created ample relevant NEs, which provide
a powerful alternative approach to study these relationships. However, existing methods for NE analysis are
poorly-suited for environmental health contexts. In particular, existing methods fail in the presence of rare
outcomes like childhood cancer (Aim 1), and they are not able to provide insight into the timing at which
children are most susceptible to any adverse exposure effects (Aim 2). We propose causal ML methods that
overcome these challenges and apply them to a NE to study the effects of traffic-related air toxics on childhood
leukemia. We also provide open source software implementing these methods (Aim 3).
Career Development and Training: Given my extensive prior training and experience in statistics and data
science, the primary aim of the training funded by this award will be the acquisition of subject-matter
proficiency, which will provide me with the insights needed to create more effective and impactful
environmental health methods. Specifically, I will pursue knowledge in the biology and epidemiology of
childhood cancer and in environmental health and exposure biology. The training will be achieved through a
combination of (1) hands-on collaborative research as described above; (2) intensive cross-disciplinary
mentorship, with mentors specializing in environmental health, pediatric oncology, cancer biology and
epidemiology, and statistics; (3) carefully-selected coursework in the Departments of Epidemiology,
Environmental Health, and Cell Biology at Harvard; and (4) relevant conferences, workshops, and seminars. I
will place special emphasis on establishing a network of expert collaborators in all my areas of training.
Environment: The Harvard Medical Campus is home to the top research teams worldwide in both childhood
cancer and environmental health. Due to Harvard’s position at the forefront of scientific discovery in these
fields, its unparalleled resources, its vibrant intellectual atmosphere, and its promotion of collaborative science
that integrates knowledge across disciplines, it provides an ideal environment in which to train on these topics.
项目概要:
我的目标是建立一个独立的研究项目,开发因果推理方法
这 K01 将使我能够进行有针对性的、
深入研究将为该计划奠定基础并获得环境、生物、
以及流行病学培训,以最大限度地提高我工作的严谨性和影响力。
研究:我们建议开发新的因果机器学习(ML)方法,以实现严格的分析
环境自然实验(NE),用于估计环境暴露对人体的因果影响
研究环境暴露与儿童癌症之间关系的经典方法。
儿童癌症面临挑战,并且得出的结果不一致。
最近地方环境监管计划的激增创造了充足的相关 NE,这些 NE 提供了
研究这些关系的强大替代方法然而,现有的 NE 分析方法还不够。
特别是,现有方法不适用于环境健康环境。
诸如儿童癌症(目标 1)之类的结果,并且他们无法深入了解发生这种情况的时间
儿童最容易受到任何不良暴露影响(目标 2)。
克服这些挑战并将其应用于NE来研究与交通相关的空气毒物对儿童的影响
我们还提供实施这些方法的开源软件(目标 3)。
职业发展和培训:考虑到我之前在统计和数据方面的广泛培训和经验
科学,该奖项资助的培训的主要目的是获取主题
熟练程度,这将为我提供创造更有效和有影响力所需的见解
具体来说,我将寻求生物学和流行病学方面的知识。
儿童癌症以及环境健康和暴露生物学方面的培训将通过
(1) 如上所述的实践合作研究的结合;(2) 密集的跨学科研究;
导师制,导师专门从事环境健康、儿科肿瘤学、癌症生物学和
(3) 流行病学系精心挑选的课程,
哈佛大学的环境健康和细胞生物学;以及 (4) 相关会议、讲习班和研讨会 I。
将特别强调在我的所有培训领域建立专家合作者网络。
环境:哈佛医学院是全球顶尖研究团队的所在地
由于哈佛大学在这些领域的科学发现的前沿地位。
领域、无与伦比的资源、充满活力的知识氛围以及对协作科学的促进
它整合了跨学科的知识,为这些主题的培训提供了理想的环境。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mobile Source Benzene Regulations and Risk of Childhood and Young Adult Hematologic Cancers in Alaska: A Quasi-experimental Study.
阿拉斯加移动源苯法规与儿童和青年血液癌症的风险:一项准实验研究。
- DOI:10.1097/ede.0000000000001594
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nethery,RachelC;Vega,Sofia;Frazier,ALindsay;Laden,Francine
- 通讯作者:Laden,Francine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel C Nethery其他文献
Gender and Ebola in Eastern Democratic Republic of the Congo: Pathways to Protective Behavioral Outcomes During the 2018-2020 Ebola Outbreak
刚果民主共和国东部的性别与埃博拉:2018-2020 年埃博拉疫情期间保护行为成果的途径
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
P. Pham;Manasi Sharma;Kenedy K Bindu;Rachel C Nethery;E. Nilles;P. Vinck - 通讯作者:
P. Vinck
Rachel C Nethery的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel C Nethery', 18)}}的其他基金
Causal machine learning methods for studying the effects of environmental exposures on childhood cancer using natural experiments
使用自然实验研究环境暴露对儿童癌症影响的因果机器学习方法
- 批准号:
10333365 - 财政年份:2021
- 资助金额:
$ 13.91万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Causal machine learning methods for studying the effects of environmental exposures on childhood cancer using natural experiments
使用自然实验研究环境暴露对儿童癌症影响的因果机器学习方法
- 批准号:
10333365 - 财政年份:2021
- 资助金额:
$ 13.91万 - 项目类别:
Air Pollution and Childhood Cancers in California
加利福尼亚州的空气污染和儿童癌症
- 批准号:
8053356 - 财政年份:2010
- 资助金额:
$ 13.91万 - 项目类别:
ADDUCTS AS QUANTITATIVE MARKERS OF BUTADIENE MUTAGENESIS
加合物作为丁二烯诱变的定量标记
- 批准号:
7900708 - 财政年份:2009
- 资助金额:
$ 13.91万 - 项目类别:
Hazardous Air Pollutants and Lymphohematopoietic Cancer Incidence in Houston 1995
1995 年休斯顿有害空气污染物和淋巴造血系统癌症发病率
- 批准号:
7500249 - 财政年份:2007
- 资助金额:
$ 13.91万 - 项目类别: