Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
基本信息
- 批准号:10548865
- 负责人:
- 金额:$ 53.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAutomobile DrivingBiomimeticsCalibrationClinicalCognitiveComplementComputer softwareComputersCustomDataDevelopmentDevicesDimensionsDisabled PersonsElementsEnvironmentEnvironmental Risk FactorFatigueGoalsHomeHome environmentInterventionKnowledgeLaboratoriesLaboratory StudyLearningLightingLimb structureLongitudinal StudiesMeasuresMonitorMotionMotor CortexMovementMusNeuronal PlasticityNoiseOutputPainParticipantPatternPerformancePhysiologicalPopulationPositioning AttributePosturePropertyQuality of lifeSelf-Help DevicesSignal TransductionSourceSpeedStable PopulationsStressSystemTechnologyTestingTimeTrainingTranslatingTranslationsbrain computer interfaceclinical translationdesigndistractionenvironmental changeexperienceexperimental studygrasphome testimprovedmotor learningneuralneural patterningneuromechanismneurotransmissionpopulation basedportabilityresponseskillsvisual tracking
项目摘要
The performance of intracortical brain-computer interfaces (BCIs) has advanced substantially over the last
decade, but these devices are not yet robust enough for the home environment, where they can truly improve
quality of life for individuals with disabilities. To date, BCIs have depended on experienced technicians to operate
large and complicated systems comprised of multiple computers, signal processors, neural recording
headstages, and custom software. Our laboratory has developed a portable, battery-powered intracortical BCI
system that enables independent in-home computer access. However, to achieve the long-term goal of true
clinical viability, BCIs must also offer reliable and robust functional performance in the less well-controlled home
environment. We have achieved robust and generalizable control of a computer cursor using a biomimetic
approach that combines reach-based velocity control of cursor position with grasp-based control of mouse click
onset and offset. This transient-based neural decoder allows for generalized click function, adding the ability to
‘click-and-drag’ when accessing a computer (similar to carrying an object) to the ‘point-and-click’ functionality
that is typically implemented in BCIs. Independent home use of the BCI system will provide an opportunity to
collect neural data over long periods of time during unstructured and varied tasks, enabling quantification of
context-dependent neural variability due to subject-state (e.g., fatigue, pain, or stress) as well as plasticity due
to learning. Understanding how neural signals vary over time will be critical for clinical BCI systems that must be
robust, generalizable, and autonomous (i.e., operate for extended periods without technician intervention).
This project will first quantify the impact of subject-state on movement-related neural activity and performance
during in-home BCI use. This understanding is critical to developing robust BCIs that eliminate the need for
recalibration even in uncontrolled environments. The extent to which subject-state information is represented in
motor cortex and overlaps with BCI control dimensions will inform development efforts to mitigate the impact of
these nuisance variables. Participants will use the BCI for a variety of self-selected computer access tasks over
periods of many months that will challenge decoder performance. This project will investigate motor learning
mechanisms that may be engaged to facilitate improvements in performance that generalize to many different
tasks. Experiments will test the hypothesis that stable population-level neural activity emerges to strengthen
movement-related activity while minimizing non-task-related neural variability. Finally, participants will undergo
targeted neural training to determine if motor learning can be accelerated and whether different mechanisms of
neural reorganization are engaged in response to interventions that challenge the speed and accuracy properties
of the decoder in different ways. This project will improve our understanding of neural plasticity mechanisms
during extended BCI use in a real-world environment. Ultimately this knowledge will enable stable, high-
functioning BCI performance during independent home-use, which is critical for clinical translation.
皮质内脑机接口(BCIs)的性能比过去有了显着提高
十年了,但这些设备对于家庭环境来说还不够强大,在家庭环境中它们可以真正改善
迄今为止,脑机接口一直依赖经验丰富的技术人员来运营。
由多台计算机、信号处理器、神经记录组成的大型复杂系统
我们的实验室开发了一种便携式、电池供电的皮质内 BCI。
然而,要实现真正的长期目标。
临床可行性,BCIs 还必须在控制较差的家庭中提供可靠和强大的功能性能
我们已经使用仿生技术实现了对计算机光标的鲁棒且通用的控制。
将基于范围的光标位置速度控制与基于抓取的鼠标点击控制相结合的方法
这种基于瞬态的神经解码器允许广义的点击功能,增加了以下功能:
访问计算机时的“点击并拖动”(类似于携带物体)至“点击”功能
通常在 BCI 中实施的 BCI 系统的独立家庭使用将提供一个机会
在非结构化和多样化的任务中长时间收集神经数据,从而能够量化
由于主体状态(例如疲劳、疼痛或压力)而导致的上下文相关的神经变异性以及由于可塑性而导致的神经变异性
了解神经信号如何随时间变化对于临床 BCI 系统至关重要。
稳健、通用且自主(即无需技术人员干预即可长时间运行)。
该项目将首先量化主体状态对运动相关神经活动和表现的影响
在家庭 BCI 使用过程中,这种理解对于开发强大的 BCI 至关重要,从而消除对 BCI 的需求。
即使在不受控制的环境中也可以重新校准主体状态信息的表示程度。
运动皮层以及与 BCI 控制维度的重叠将为减轻以下影响的开发工作提供信息
这些令人讨厌的变量将使用 BCI 来完成各种自行选择的计算机访问任务。
数月的时间将挑战解码器的性能,该项目将研究运动学习。
可能涉及促进绩效改进的机制,这些机制可推广到许多不同的领域
实验将检验以下假设:稳定的群体水平神经活动会加强。
最后,参与者将经历与运动相关的活动,同时最大限度地减少非任务相关的神经变异。
有针对性的神经训练,以确定运动学习是否可以加速,以及是否有不同的机制
神经重组致力于响应挑战速度和准确性特性的干预措施
该项目将提高我们对神经可塑性机制的理解。
在现实世界环境中扩展 BCI 过程中,这些知识最终将实现稳定、高效。
在独立家庭使用期间发挥 BCI 性能,这对于临床转化至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer L. Collinger其他文献
Jennifer L. Collinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer L. Collinger', 18)}}的其他基金
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10838152 - 财政年份:2023
- 资助金额:
$ 53.27万 - 项目类别:
Development of an EMG-controlled BCI for biomimetic control of hand movement in humans
开发 EMG 控制的 BCI,用于仿生控制人类手部运动
- 批准号:
10651404 - 财政年份:2023
- 资助金额:
$ 53.27万 - 项目类别:
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10546486 - 财政年份:2022
- 资助金额:
$ 53.27万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10363903 - 财政年份:2022
- 资助金额:
$ 53.27万 - 项目类别:
Influence of Task Complexity and Sensory Feedback on Cortical Control of Grasp Force
任务复杂性和感觉反馈对皮质控制握力的影响
- 批准号:
10705074 - 财政年份:2021
- 资助金额:
$ 53.27万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10289762 - 财政年份:2021
- 资助金额:
$ 53.27万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10480085 - 财政年份:2021
- 资助金额:
$ 53.27万 - 项目类别:
Eighth International Brain Computer Interface Meeting
第八届国际脑机接口会议
- 批准号:
9913702 - 财政年份:2020
- 资助金额:
$ 53.27万 - 项目类别:
Context-dependent processing in sensorimotor cortex
感觉运动皮层的上下文相关处理
- 批准号:
9791028 - 财政年份:2018
- 资助金额:
$ 53.27万 - 项目类别:
Investigation of Cortical Changes Following Spinal Cord Injury
脊髓损伤后皮质变化的调查
- 批准号:
8200932 - 财政年份:2012
- 资助金额:
$ 53.27万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Biomineralization potential of inorganic polymer for bone tissue regenerative engineering
无机聚合物在骨组织再生工程中的生物矿化潜力
- 批准号:
10728774 - 财政年份:2023
- 资助金额:
$ 53.27万 - 项目类别:
Biomechanical Mechanisms Underlying Pathologic Hepatic Stellate Cell Behavior in Liver Fibrosis
肝纤维化中肝星状细胞病理行为的生物力学机制
- 批准号:
10656257 - 财政年份:2022
- 资助金额:
$ 53.27万 - 项目类别:
Developing a Novel Vascularized Bone Microdevice for Investigating the Post-Stroke Bone Microenvironment
开发新型血管化骨微装置用于研究中风后骨微环境
- 批准号:
10664856 - 财政年份:2022
- 资助金额:
$ 53.27万 - 项目类别:
Engrailed-1 and Epigenetic Vulnerabilities in Metastatic Pancreatic Cancer
转移性胰腺癌中的 Engrailed-1 和表观遗传脆弱性
- 批准号:
10577889 - 财政年份:2021
- 资助金额:
$ 53.27万 - 项目类别:
Integration And Remodeling Of Bioprinted Skin In Full-Thickness Wound Healing
生物打印皮肤在全层伤口愈合中的整合和重塑
- 批准号:
10316225 - 财政年份:2019
- 资助金额:
$ 53.27万 - 项目类别: