MOLECULAR ANALYSIS OF MALARIA MITOCHONDRIAL GENE REGULATION
疟疾线粒体基因调控的分子分析
基本信息
- 批准号:10543736
- 负责人:
- 金额:$ 41.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAllelesBiochemistryBiological AssayBiologyBiotinCell physiologyCircular DNAComplexCrista ampullarisDNADNA Repair PathwayDNA-Directed RNA PolymeraseDataDevelopmentDrug DesignDrug TargetingDrug resistanceElectron TransportEngineeringEnzymesEukaryotaEvolutionExonucleaseExposure toGene ExpressionGene Expression ProfileGene Expression RegulationGenesGenetic RecombinationGenetic TranscriptionGenomeGoalsHistonesHumanIn VitroKnowledgeLabelLaboratoriesLifeLife Cycle StagesLinkMalariaMetabolicMethodsMitochondriaMitochondrial DNAMitochondrial ProteinsMitochondrial RNAModelingMolecular AnalysisMutateMutationOrganellesParasitesPathway interactionsPeptide Initiation FactorsPlasmodium falciparumPreparationProcessProteomeRegulationRegulatory PathwayRepressionResistanceSequence AnalysisSigma FactorSourceSystemTechniquesTranslational RepressionTranslationsdrug developmentfallsgene repressiongenome sequencingin vivoinhibitormembermitochondrial genomemutantnew therapeutic targetnovelnovel strategiesnovel therapeutic interventionnovel therapeuticspressureprotein complexreconstitutiontargeted treatmenttranscriptomewhole genome
项目摘要
The human malaria parasite, Plasmodium falciparum, rapidly evolves drug resistance, creating
the urgent need for new treatment strategies. A critical barrier to identifying and developing new
drug development targets is a knowledge gap regarding most essential processes and regulatory
pathways. Ideally, new targets should be highly conserved and be unable or have limited ability
to mutate in order to evolve resistance. Parasite mitochondrial function is critically essential
across all the life stages and differs substantially from the human organelle; however, most
mitochondrial proteins have yet to be identified in malaria parasites. During the intraerythrocytic
development cycle (IDC), P. falciparum is supported by a single mitochondrion containing about
~20 copies of the 6 kb genome, characterized by extensive recombination. IDC parasite
mitochondria do not make cristae to insert electron transport chain (ETC) enzymes, thus the
organelle may have evolved unique transcription or translation repression systems to limit
expression of the mitochondrial encoded genes. Results from our integrative approach combining
whole genome sequencing and metabolic profiling, suggests a link between mitochondrial gene
expression regulation and resistance to ETC inhibitors, potentially due to recombination. Thus,
we hypothesize that 1) a feature of the multicopy status is retention of cryptic mitochondrial
genome copies encoding mutant alleles, which can be recombined for survival. 2) P. falciparum
mitochondria use previously uncharacterized gene expression systems, for repression and
activation which are unique to this organelle. The current objectives are to identify the source of
recombination between mitochondrial genomes and its contribution to drug resistance as well as
to determine the mitochondrial DNA repair pathways and transcriptional machinery of the
mitochondria using single-organelle approaches. This proposal will identify and define previously
unknown and uncharacterized aspects of parasite biology, with the goal of advancing rational
drug design. These studies will refine our knowledge about the basic mechanism of gene
regulation in the malaria mitochondria. Investigating the mechanisms underpinning these effects
will lead to the identification of highly conserved drug development targets.
人类疟原虫恶性疟原虫迅速产生耐药性,产生耐药性
迫切需要新的治疗策略。识别和开发新产品的关键障碍
药物开发目标是关于最重要流程和监管的知识差距
途径。理想情况下,新靶点应该高度保守并且不能或能力有限
变异以产生抗性。寄生虫线粒体功能至关重要
跨越所有生命阶段,与人体细胞器有很大不同;然而,大多数
疟原虫中的线粒体蛋白尚未被鉴定。红细胞内
发育周期(IDC),恶性疟原虫由包含约
约 20 个 6 kb 基因组拷贝,其特征是广泛重组。 IDC寄生虫
线粒体不会使嵴插入电子传递链(ETC)酶,因此
细胞器可能已经进化出独特的转录或翻译抑制系统来限制
线粒体编码基因的表达。我们的综合方法结合的结果
全基因组测序和代谢分析表明线粒体基因之间存在联系
表达调节和对 ETC 抑制剂的抗性,可能是由于重组所致。因此,
我们假设 1)多拷贝状态的一个特征是隐秘线粒体的保留
编码突变等位基因的基因组拷贝,可以重组以求生存。 2) 恶性疟原虫
线粒体使用以前未表征的基因表达系统来抑制和
该细胞器特有的激活。目前的目标是确定来源
线粒体基因组之间的重组及其对耐药性的贡献以及
确定线粒体 DNA 修复途径和转录机制
使用单细胞器方法的线粒体。该提案将确定并定义先前
寄生虫生物学的未知和未表征的方面,其目标是推进理性
药物设计。这些研究将完善我们对基因基本机制的认识
疟疾线粒体的调节。研究这些影响的机制
将导致高度保守的药物开发靶点的识别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin D Lane其他文献
Kristin D Lane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin D Lane', 18)}}的其他基金
MOLECULAR ANALYSIS OF MALARIA MITOCHONDRIAL GENE REGULATION
疟疾线粒体基因调控的分子分析
- 批准号:
10294685 - 财政年份:2022
- 资助金额:
$ 41.39万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Project 1: Determine the mechanisms Cyclin D-Cdk4/6 uses to drive cell proliferation
项目 1:确定 Cyclin D-Cdk4/6 驱动细胞增殖的机制
- 批准号:
10867552 - 财政年份:2023
- 资助金额:
$ 41.39万 - 项目类别:
Defining the components of olfactory singular expression
定义嗅觉奇异表达的组成部分
- 批准号:
10567951 - 财政年份:2023
- 资助金额:
$ 41.39万 - 项目类别:
Molecular genetics of human age-related hearing loss
人类年龄相关性听力损失的分子遗传学
- 批准号:
10637870 - 财政年份:2023
- 资助金额:
$ 41.39万 - 项目类别:
Enzymology of Bacteroides short and branched chain fatty acid metabolism
拟杆菌短链和支链脂肪酸代谢的酶学
- 批准号:
10651505 - 财政年份:2023
- 资助金额:
$ 41.39万 - 项目类别: