High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
基本信息
- 批准号:10543185
- 负责人:
- 金额:$ 45.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Amino AcidsAmplifiersBypassCarboplatinCell SeparationCell physiologyCellsCellular Metabolic ProcessChemicalsCholesterolCisplatinCollaborationsComputers and Advanced InstrumentationData ScienceDevelopmentDrug resistanceFatty AcidsFiberFingerprintGlucoseHomeostasisImageIndividualKnowledgeLasersLearningLegal patentLipidsMachine LearningMalignant NeoplasmsMalignant neoplasm of ovaryMapsMeasurementMeasuresMetabolicMetabolismMicroscopeMicroscopyMolecular ProfilingNoiseOrganismPhysiologic pulsePriceResearchResistanceResolutionSamplingScanningSideSignal TransductionSpeedStressThinkingTimeTissuesanticancer researchcancer celldenoisinghuman diseaseimaging platformimprovedinstrumentationinventionmetabolic imagingmillisecondmultidisciplinarynovelrefractory cancerspectroscopic imagingsubmicrontooltumor metabolismvibration
项目摘要
Project Summary:
Providing molecular fingerprint vibration information and high imaging speed, coherent Raman scattering
microscopy, based on either coherent anti-Stokes Raman scattering (CARS) or stimulated Raman scattering
(SRS), allows real-time vibrational imaging of living cells and/or tissues with sub-micron spatial resolution These
instrumentation-based advances, however, do not fulfill all the desired parameters in hyperspectral imaging,
including broad bandwidth, high signal to noise ratio (SNR) and high speed. In pushing these physical limits, it
is common that one parameter is optimized at the price of sacrificing other advantages. The current proposal
aims to break this conventional thinking of "no free lunch in optimization" through a synergistic integration of
advanced instrumentation and data science. A multidisciplinary team with a strong track record of collaborations
will pursue the proposed studies. Ji-Xin Cheng (PI) is a leading expert in the development and applications of
SRS chemical imaging. Lei Tian (co-I) is a leading expert in computational microscopy and machine learning.
Daniela Matei (co-I) is a leading expert in cancer research specialized in ovarian cancer. We aim to develop two
complementary platforms that will allow high-speed, high-content, and high-sensitivity mapping of cell
metabolism. The first platform is for samples without prior knowledge. We will build a polygon scanner to tune
the delay between two chirped pulses on a 20-microsecond time scale. We will then deploy deep spatial-spectral
learning to denoise the low-SNR hyperspectral measurements and extract salient information with much
enhanced SNR. This integrated approach effectively bypasses the conventional tradeoff between acquisition
speed and SNR and enables high-speed, high-throughput, hyperspectral SRS imaging using informative
fingerprint Raman bands. The second platform is for samples with known target species. We will develop a
sparsely sampled hyperspectral imaging strategy to increase the overall speed by one order of magnitude while
maintaining the same SNR. We will develop a novel "recursive feature elimination" approach to determine the
minimum number of essential frames. On the instrumentation side, a fast-tuning fiber laser will be deployed to
acquire a sparsely sampled hyperspectral stack within one second for the study of living systems. As a focused
application, we will apply the proposed platforms to systematically investigate metabolic reprogramming in
ovarian cancers that are cisplatin resistant. Our focused application will unveil hidden signatures that are
associated with drug resistance, which will open new opportunities for improved treatment of drug-resistant
cancers.
项目摘要:
提供分子指纹振动信息和高成像速度,连贯的拉曼散射
显微镜,基于连贯的反stokes拉曼散射(CAR)或刺激的拉曼散射
(SRS),允许使用亚微米空间分辨率的活细胞和/或组织实时振动成像
但是,基于仪器的进步并不能满足高光谱成像中的所有所需参数,
包括宽带宽,高信号与噪声比(SNR)和高速。在推动这些物理极限时,
很常见的是,一个参数以牺牲其他优势的价格进行了优化。当前的建议
旨在通过协同融合的共同融合来打破这种传统的思想
高级仪器和数据科学。具有良好合作记录的多学科团队
将进行拟议的研究。 Ji-Xin Cheng(PI)是开发和应用领域的领先专家
SRS化学成像。 Lei Tian(Co-I)是计算显微镜和机器学习方面的领先专家。
Daniela Matei(Co-I)是专门研究卵巢癌的癌症研究的领先专家。我们的目标是发展两个
互补平台将允许细胞的高速,高含量和高敏性映射
代谢。第一个平台是无知识的样本。我们将建造一个多边形扫描仪来调整
在20英寸的时间尺度上,两个chir脉脉冲之间的延迟。然后,我们将部署深空光谱
学会降级低SNR高光谱测量并提取显着信息
增强的SNR。这种综合方法有效地绕过了收购之间的常规权衡
速度和SNR并启用高速,高通量,高光谱SRS成像
指纹拉曼乐队。第二个平台用于具有已知目标物种的样品。我们将发展一个
稀疏采样的高光谱成像策略以将整体速度提高一个数量级,而
保持相同的SNR。我们将开发一种新颖的“递归功能消除”方法来确定
必需框架数量最少。在仪器方面,将部署快速调整的光纤激光器
在一秒钟内,以获取稀疏采样的高光谱堆栈,以进行生活系统研究。作为专注的
应用,我们将应用提出的平台系统地研究代谢重编程
抗顺铂的卵巢癌。我们集中的应用将揭示隐藏的签名
与耐药性有关,这将为改善耐药性治疗的新机会开放
癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji-Xin Cheng其他文献
Ji-Xin Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji-Xin Cheng', 18)}}的其他基金
2023 Chemical Imaging Gordon Research Conferences
2023 年化学成像戈登研究会议
- 批准号:
10605394 - 财政年份:2023
- 资助金额:
$ 45.62万 - 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
- 批准号:
10669784 - 财政年份:2022
- 资助金额:
$ 45.62万 - 项目类别:
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
- 批准号:
10344774 - 财政年份:2022
- 资助金额:
$ 45.62万 - 项目类别:
Sub-millimeter precision wireless neuromodulation using a microwave split ring resonator
使用微波开口环谐振器的亚毫米精度无线神经调节
- 批准号:
10516429 - 财政年份:2022
- 资助金额:
$ 45.62万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10491322 - 财政年份:2021
- 资助金额:
$ 45.62万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10271761 - 财政年份:2021
- 资助金额:
$ 45.62万 - 项目类别:
Mapping Cancer Metabolism by Mid-infrared Photothermal Microscopy
通过中红外光热显微镜绘制癌症代谢图
- 批准号:
10675665 - 财政年份:2021
- 资助金额:
$ 45.62万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10206200 - 财政年份:2020
- 资助金额:
$ 45.62万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10660979 - 财政年份:2020
- 资助金额:
$ 45.62万 - 项目类别:
Vibrational Spectroscopic Imaging to Unveil Hidden Signatures in Living Systems
振动光谱成像揭示生命系统中隐藏的特征
- 批准号:
10439640 - 财政年份:2020
- 资助金额:
$ 45.62万 - 项目类别:
相似国自然基金
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向超精密电机系统的双降压对称半桥功率放大器噪声机理及抑制策略研究
- 批准号:52307042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-content High-speed Chemical Imaging of Metabolic Reprogramming by Integration of Advanced Instrumentation and Data Science
通过先进仪器和数据科学的集成进行代谢重编程的高内涵高速化学成像
- 批准号:
10344774 - 财政年份:2022
- 资助金额:
$ 45.62万 - 项目类别:
Highly-compliant Microneedle Arrays for Peripheral Nerve Mapping
用于周围神经映射的高度顺应性微针阵列
- 批准号:
9900908 - 财政年份:2017
- 资助金额:
$ 45.62万 - 项目类别:
Highly-compliant Microneedle Arrays for Peripheral Nerve Mapping
用于周围神经映射的高度顺应性微针阵列
- 批准号:
9415137 - 财政年份:2017
- 资助金额:
$ 45.62万 - 项目类别: