Bayesian Hierarchical Methods for Localized Analysis of Genic Intolerance to Variation
用于基因变异不耐受局部分析的贝叶斯分层方法
基本信息
- 批准号:10542431
- 负责人:
- 金额:$ 16.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-05 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdvisory CommitteesAlgorithmsBayesian ModelingBiologicalCellsChildClinicalClinical ManagementClinical TreatmentCollaborationsCommunitiesComplexComputer softwareConserved SequenceDataData SetDiagnosisDiagnosticDiseaseEnvironmental ExposureEuropeanEvaluationExonsFoundationsGeneral PopulationGenesGeneticGenetic DiseasesGenetic ModelsGenetic TranscriptionGenetic VariationGenetic studyGenomeGenotype-Tissue Expression ProjectGoalsGroupingHeterogeneityHumanImmunologyInvestigationJointsMapsMedical GeneticsMendelian disorderMentorsMentorshipMethodologyMethodsModelingNeurodevelopmental DisorderParameter EstimationPathogenicityPathologistPatientsPatternPediatric HospitalsPhenotypePhiladelphiaPopulationPopulation HeterogeneityPrevalenceProliferatingProtein IsoformsRNA SequencesResearchResourcesRunningSample SizeSamplingScientistSignal TransductionStatistical MethodsStructureTechniquesTechnologyTestingTherapeuticTimeTissuesTrainingTrans-Omics for Precision MedicineTranscriptVariantWorkanalytical toolburden of illnesscell typeclinical diagnosticsdevelopmental diseasedifferential expressiondisease heterogeneitydisease phenotypedisease-causing mutationdisorder riskexomeexome sequencinggenome resourceimprovedinsightinterestmultidisciplinarynovelpopulation basedprecision medicinepressurescale upsoftware developmenttraittranscriptomicsuser friendly softwarewhole genome
项目摘要
Project Summary: The goal of this proposed mentored research is to tie genetic variation to disease by
analyzing regions that are intolerant to variation. Identifying regions that are intolerant to new variation can help
localize regions of potential functional importance and biologic relevance. Large public population consortia are
now accumulating datasets of sufficient size to detect regions subject to evolutionary selective pressures at an
increasingly granular level. However, there remains a shortage of appropriate analytical tools that are built to
specifically address important issues of disease heterogeneity across diverse populations. Despite the fact that
clinical exome sequencing is increasingly used for improved diagnostic evaluation, many genetic disorders
remain uncharacterized and diagnosis rates are still relatively low. In Aim 1, I will develop methodology that
localizes regions intolerant to variation and differential isoform expression associated with disease. Many genes
display tissue dependent transcript isoforms indicating potential functional implications of different isoforms. I will
characterize selective pressure across all isoforms using Bayesian techniques by looking at patterns of genetic
constraint across large standing populations, predominantly leveraging public data sets on the order of hundreds
of thousands of samples. Then I will leverage existing expression data to isolate key isoforms across different
cell and tissue types that are associated with diseases of interest. Then by accounting for regional intolerance
to variation, a joint transcriptomic variation–intolerance approach can be employed to improve disease
association testing. In Aim 2, I will analyze ancestry and cross species patterns of genetic intolerance to
variation. The majority of genetic studies have focused on European populations, which ignores genetic and
phenotypic diversity that can be leveraged to improve both targeted and overall diagnostic and clinical
capabilities. I will test for ancestry and cross species patterns of genetic intolerance to variation and association
with disease. Expanding to more populations will scale up the already large set of parameters being estimated;
so, I will develop new statistical methods and software to improve optimization of parameter estimation for the
Bayesian hierarchical models. I will isolate key ancestral populations with known differences in selective pressure
to validate findings while then leveraging these new methods and population disease patterns further to isolate
novel signals of ancestry-specific selective pressures. I will look for conserved regions across species to isolate
essential exonic regions while also isolating unique regions in the context of human specific genetic variation
and disease, such as neurodevelopmental disorders. During the training time for this proposed study I will focus
on advancing my understanding of biologic mechanisms and clinical genetics to better inform the statistical
genetics methods I develop. My mentorship and advisory committee consists of a strong multidisciplinary team
of geneticists, pathologists, computational scientists, and biologists who will guide and collaborate with me to
refine my work to improve variant interpretation and to advance precision medicine.
项目摘要:这项拟议的讨论研究的目的是将遗传变异与疾病联系起来
分析不容忍变异的区域。识别不容忍新变化的区域可以帮助
具有潜在功能重要性和生物学相关性的本地化区域。大型公共人口财团是
现在积累了足够大小的数据集,以检测在一个受到进化选择压力的区域
日益颗粒状的水平。但是,仍然缺乏适合的分析工具
尽管事实是特别解决了潜水员种群中疾病异质性的重要问题。
临床外显子组测序越来越多地用于改进诊断评估,许多遗传疾病
保持未表征,诊断率仍然相对较低。在AIM 1中,我将开发方法论
将与疾病相关的变异和差异同工型表达不耐受。许多基因
显示组织依赖性转录本同工型,表明不同同工型的潜在功能意义。我会
使用贝叶斯技术来表征所有同工型的选择性压力,以查看通用模式
在大型群体中的约束,主要利用数百个顺序的公共数据集
成千上万的样本。然后,我将利用现有的表达数据来隔离不同的键同工型
与感兴趣的疾病有关的细胞和组织类型。然后考虑区域intlerance
为了变化,可以聘请联合转录组变异 - 含量方法来改善疾病
关联测试。在AIM 2中,我将分析遗传肠道的祖先和跨物种模式
变化。大多数遗传研究都集中在欧洲人群上,欧洲人口忽略了遗传和
可以利用的表型多样性来改善目标和整体诊断和临床
功能。我将测试遗传肠道对变异和关联的血统和跨物种模式
疾病。扩展到更多的人群将扩展已经估计的已经很大的参数集;
因此,我将开发新的统计方法和软件,以提高参数估计的优化
贝叶斯分层模型。我将隔离关键祖先种群,在选择性压力方面有已知差异
验证发现的同时利用这些新方法和种群疾病模式进一步分离
祖先特定选择压力的新型信号。我将寻找跨规范的配置区域以隔离
必不可少的外显子区域,同时在人类特异性遗传变异的背景下也隔离了独特的区域
和疾病,例如神经发育障碍。在这项拟议的研究的培训期间,我将集中精力
关于促进我对生物学机制和临床遗传学的理解,以更好地告知统计数据
我开发的遗传学方法。我的精神制和咨询委员会由一个强大的多学科团队组成
将指导和合作与我合作的遗传学家,病理学家,计算科学家和生物学家
完善我的工作,以改善变体的解释并进步精确医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tristan Jonathan Hayeck其他文献
Tristan Jonathan Hayeck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tristan Jonathan Hayeck', 18)}}的其他基金
Bayesian Hierarchical Methods for Localized Analysis of Genic Intolerance to Variation
用于基因变异不耐受局部分析的贝叶斯分层方法
- 批准号:
10324586 - 财政年份:2021
- 资助金额:
$ 16.89万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
- 批准号:
10712290 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
FRONTIERS: Foreign-Born Latinos Cancer Screening
前沿:外国出生的拉丁裔癌症筛查
- 批准号:
10365891 - 财政年份:2022
- 资助金额:
$ 16.89万 - 项目类别:
UTA Summer Undergraduate Research Program to Promote Diversity in Health Related Research
UTA暑期本科生研究计划促进健康相关研究的多样性
- 批准号:
10618994 - 财政年份:2022
- 资助金额:
$ 16.89万 - 项目类别: