Assessing vascular permeability and nanobubble extravasation with contrast-enhanced ultrasound imaging
通过对比增强超声成像评估血管通透性和纳米气泡外渗
基本信息
- 批准号:10543043
- 负责人:
- 金额:$ 5.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAdsorptionAffectArchitectureAtherosclerosisBehaviorBiological MarkersBloodBlood CellsBlood VesselsBradykininCell surfaceCharacteristicsChick EmbryoChronicCirculationClinicalContrast MediaControlled EnvironmentDataDevelopmentDiabetes MellitusDiameterDiseaseDoseEmbryoEndothelial CellsEndotheliumEnsureEnvironmentErythrocytesExposure toExtracellular MatrixExtravasationFlow CytometryFoundationsGoalsGrowth FactorHealth Care CostsHemeHistamineHistologyHumanImageImaging TechniquesImmune systemIn VitroIndividualInflammationInflammatoryInjectionsKineticsKnowledgeLocationMalignant NeoplasmsMeasuresMethodsMicrobubblesMicrofluidic MicrochipsMicroscopyMonitorMorphologyMovementNormal tissue morphologyPancreasPathologicPatient CarePatientsPermeabilityPharmaceutical PreparationsPhysiologicalProbabilityProcessProductionProtocols documentationRegimenResearchRetinal DiseasesSelection for TreatmentsSiteSolid NeoplasmStructureSurfaceTestingTherapeuticTherapeutic InterventionTimeTissuesTranslationsTreatment EfficacyTumor TissueUltrasonographyVascular Endothelial CellVascular Endothelial Growth FactorsVascular PermeabilitiesWhole BloodWorkangiogenesischorioallantoic membranechronic inflammatory diseasecontrast enhancedcost effectivecytokinediabeticexperimental studyimaging modalityimprovedin vivoin vivo imagingindividual patientmembrane modelmouse modelnanobubblenanoparticlenanoparticle deliverynanoscalenanosizednanotherapeuticnovelparticlepersonalized therapeuticpredictive toolsreal-time imagesside effectsoft tissuespatiotemporalsubcutaneoustime intervaltooltumorultrasounduptake
项目摘要
PROJECT SUMMARY
In many chronic inflammatory diseases, vascular endothelial cells become pathologically permeable due to
conditions like angiogenesis and production of growth factors and inflammatory cytokines (e.g. histamine,
bradykinin, etc.). In cancer, this process can be exploited for delivery of nanoparticles to tumors via the enhanced
permeability and retention (EPR) effect. However, nanoparticle-based therapeutics have led to inconsistent
results in patients. This is due to many factors, with a main one being heterogeneous tumor vascular architecture
both between patients and within a single tumor. Transport of the nanoparticle to the tumor and into the
parenchyma is complicated by uptake by the immune system, ineffective margination, and inefficient
extravasation. Guidance is needed to inform clinicians on what therapies may be most effective for each patient.
Effective guidance could reduce health-care costs and negative side effects of medication. An inexpensive, safe,
non-invasive, and real-time imaging method may be capable of categorizing the extent of vascular permeability
in tumors and once validated, personalize therapeutic regimens for patients. Such a tool could be used not only
for tumors, but for all diseases involving pathologically permeable vasculature. With this goal in mind, the
objective of the proposed research in this application is to work toward development of a real-time method for
evaluating vascular permeability over the entire tumor using novel nanobubble (NB)-based contrast-enhanced
ultrasound (CEUS) in vivo. This method will build upon dynamic CEUS protocols used clinically with
microbubbles (MBs). NBs, which are 100-400 nm in diameter, have been shown to extravasate into the tumor
parenchyma. The use of clinical ultrasound in developing this method will ensure that eventual translation to
patients is safe, cost-effective, non-invasive, and widely accessible. To test this objective, Aim 1 experiments
will focus on identifying NB dynamic CEUS kinetics based on NB size and compared to MBs. It will also identify
kinetic parameters, margination, and extravasation of NBs in a flow environment in the presence of human whole
blood and permeabilized endothelium. These results will help identify the size of extravasated NBs and the
degree of endothelial permeability when applied to a more complicated in vivo setup in Aim 2. Aim 2a will use a
chick embryo chorioallantoic membrane (CAM) model with controlled levels of permeability to test NB dynamic
CEUS parameters in vivo. With known levels of permeability, the CAM results will provide essential information
for assessing the extent of permeability in vivo. This method will be applied to an uncontrolled tumor environment
in Aim 2b. This proposed research will yield: 1) new information on how contrast agent size affects interaction
with red blood cells and dynamic CEUS parameters, 2) a real-time analysis of the tumor-associated EPR effect,
yielding new physiological data, and 3) a non-invasive method for determining the extent of pathological
permeability in vivo. This proposal will provide crucial knowledge on vascular permeability and extravasation
potential of nanoparticles, which is essential to improve patient care.
项目概要
在许多慢性炎症性疾病中,血管内皮细胞由于以下原因而变得具有病理渗透性:
血管生成以及生长因子和炎症细胞因子(例如组胺、
缓激肽等)。在癌症中,这一过程可用于通过增强的纳米粒子递送至肿瘤
渗透性和保留(EPR)效应。然而,基于纳米颗粒的治疗方法导致了不一致的结果
对患者产生的结果。这是由于多种因素造成的,其中一个主要因素是肿瘤血管结构的异质性
无论是在患者之间还是在单个肿瘤内。将纳米颗粒运输至肿瘤并进入
实质因免疫系统的摄取、无效的边缘化和低效而变得复杂
外渗。需要指导来告知临床医生哪些疗法对每位患者最有效。
有效的指导可以降低医疗保健成本和药物的负面副作用。一种廉价、安全、
非侵入性实时成像方法可能能够对血管通透性程度进行分类
在肿瘤中,一旦得到验证,就可以为患者制定个性化的治疗方案。这样的工具不仅可以用
适用于肿瘤,也适用于所有涉及病理性通透性脉管系统的疾病。怀着这个目标,
本申请中拟议研究的目标是致力于开发一种实时方法
使用新型纳米气泡 (NB) 对比增强技术评估整个肿瘤的血管通透性
体内超声(CEUS)。该方法将建立在临床上使用的动态 CEUS 协议的基础上
微气泡 (MB)。直径为 100-400 nm 的 NB 已被证明可以外渗到肿瘤中
薄壁组织。在开发该方法时使用临床超声将确保最终转化为
患者安全、具有成本效益、非侵入性且广泛可及。为了测试这个目标,Aim 1 实验
将重点根据 NB 大小并与 MB 进行比较来确定 NB 动态 CEUS 动力学。它还将识别
人体存在的流动环境中 NB 的动力学参数、边缘化和外渗
血液和通透性内皮。这些结果将有助于确定外渗 NB 的大小和
应用于目标 2 中更复杂的体内设置时的内皮通透性程度。目标 2a 将使用
具有受控渗透性水平的鸡胚绒毛尿囊膜 (CAM) 模型,用于测试 NB 动态
体内 CEUS 参数。在已知渗透率水平的情况下,CAM 结果将提供重要信息
用于评估体内渗透性程度。该方法将应用于不受控制的肿瘤环境
在目标 2b 中。这项拟议的研究将产生:1)关于造影剂大小如何影响相互作用的新信息
具有红细胞和动态 CEUS 参数,2) 实时分析肿瘤相关的 EPR 效果,
产生新的生理数据,以及3)一种确定病理程度的非侵入性方法
体内渗透性。该提案将提供有关血管通透性和外渗的重要知识
纳米粒子的潜力,这对于改善患者护理至关重要。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michaela Cooley其他文献
Michaela Cooley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michaela Cooley', 18)}}的其他基金
Assessing vascular permeability and nanobubble extravasation with contrast-enhanced ultrasound imaging
通过对比增强超声成像评估血管通透性和纳米气泡外渗
- 批准号:
10313881 - 财政年份:2022
- 资助金额:
$ 5.21万 - 项目类别:
相似国自然基金
孔隙水对页岩气吸附-解析的影响机制研究:核磁共振与同位素联合约束
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
生物质炭施加对土壤微界面镉铅竞争吸附和同步固定的影响机制
- 批准号:42307017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层页岩有机纳米孔隙壁面形变对流体吸附和扩散的影响机理研究
- 批准号:52306096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭源DOM-针铁矿晶面互馈对砷吸附与转化的影响机制
- 批准号:42307278
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多糖-纳米硒与黏蛋白非共价诱导的吸附模式对其跨肠黏液层渗透行为的影响机制
- 批准号:32302073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 5.21万 - 项目类别:
Engineering next generation probiotics for delivery of therapeutics
设计下一代益生菌以提供治疗
- 批准号:
10697438 - 财政年份:2023
- 资助金额:
$ 5.21万 - 项目类别:
Immunotherapeutic nanoparticles: Implications for the treatment of tuberculosis and HIV
免疫治疗纳米粒子:对结核病和艾滋病毒治疗的影响
- 批准号:
10757507 - 财政年份:2023
- 资助金额:
$ 5.21万 - 项目类别:
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
- 批准号:
10593377 - 财政年份:2023
- 资助金额:
$ 5.21万 - 项目类别:
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
- 批准号:
10644574 - 财政年份:2023
- 资助金额:
$ 5.21万 - 项目类别: